期刊文献+

压缩感知在协作多点通信中的应用 被引量:1

下载PDF
导出
摘要 协作多点通信技术可以有效的解决LTE技术中小区边缘用户的接收性能,但是会使频谱的利用率下降.为了提高频谱的利用率,可以利用压缩感知技术对待传输数据进行压缩,在接收端利用联合小波阈值去噪算法对接收到的观测值进行去噪,并利用压缩感知的重构算法对信号进行恢复,这样可以有效地提高用户的接收性能,并提高了频谱的利用率.
作者 赵玉娟
出处 《江苏教育学院学报(自然科学版)》 2011年第2期49-52,共4页 Journal of Jiangsu Institute of Education(Social Science)
  • 相关文献

参考文献15

  • 1E Candes. Compressive sampling [ A ] . Proceedings of the International Congress of Mathematicians [ C]. Madrid, Spain, 2006, (3).
  • 2E Candes, J Romberg , Terence Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Trans. on Information Theory, 2006, (2).
  • 3E Candes and J Romberg. Quantitative robust uncertainty principles and optimally sparse decompositions [ J ]. Foundations of Comput Math, 2006, (2).
  • 4D L Donoho. Compressed sensing [J]. IEEE Trans. on Information Theory 2006, (d).
  • 5S. Grace Chang , Bin Yu, Martin Vetterlil. Wavelet Thresholding for Muhiple Noisy Image Copies[J]. IEEE Transl Image Processing, 2000, (9).
  • 6Keller T, Hanzo L. Adaptive modulation techniques for duplex OFDM transmission [J]. IEEE Transactionson Vehicular Technology, 2000,49.
  • 7Cand es E, Tao T. Decoding by linear programming [J]. IEEE Transactions on Information Theory, 2005, (12).
  • 8Baraniuk R G. Compressive sensing[J]. IEEE Signal Processing Magazine, 2007, (4).
  • 9石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:712
  • 10Cand es E, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory, 2006, (2).

二级参考文献82

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献711

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部