期刊文献+

含有楔型弹性夹杂材料的奇异性分析 被引量:1

The Analysis of Singular Stress Field near the Corner of Wedged Dissimilar Materials
下载PDF
导出
摘要 基于位移函数φ= r2- δf(θ) ,研究了平面应变情况下两种不可压缩材料界面处的奇异性问题.通过研究发现,奇异性指数δ不仅与材料性质有关,而且与其几何参数有关.应用此位移函数,我们还可求得该问题的位移场和应力本征场.最后本文用所得结果与已有文献结果作比较,从而验证本方性的正确性.本方法公式推导简单,是这类问题分析的新方性. Based on the displacement function φ=r 2-δ f(θ),the stress singularities of interface corners of wedged dissimilar materials are considered.It is found that the singular exponent δ depends not only on the characteristics of the materials ,but also on the geometric parameters.The displacement field and the strain field can be derived.Comparing the results of the paper to those of the reference articles,the rationality of the paper can be proved.The derivation process of the formulae is very simple,and the technique used can be considered to be a new method for the solution of the problem studied.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 1999年第4期98-102,共5页 Journal of Harbin Engineering University
基金 黑龙江省自然科学基金
关键词 位移函数 应力奇异性 平面应变 弹性夹杂材料 displacement function stress singularity plane strain
  • 相关文献

同被引文献12

  • 1Williams M L.The Stress Around a Fault or Crack in Dissimilar Media[J].Bull.Seismal.Soc.America,1959,49:199-204.
  • 2Bogy D B,Wang K C.Stress Singularities at Interface Corners in Bounded Dissimilar Isotropic Elastic Materials[J].International Journal of Solids and Structures,1971,7:993-1005.
  • 3Chen D H.Analysis of Singular Stress Field Around the Inclusion Corner Tip[J].Engineering Fracture Mechanics,1994,49(4):533-546.
  • 4Pageau S S,Joseph P F,Biggers Jr S B.Finite Element Analysis of Anisotropic Materials with Singular Inplane Stress Fields[J].International Journal of Solids and Structures,1995,32:571-591.
  • 5Zhou W,Lim K M,Lee K H,et al.A New Variable-Order Singular Boundary Element for Calculating Stress Intensity Factors in Three-Dimensional Elasticity Problems[J].International Journal of Solids and Structures,2005,42:159-185.
  • 6Tong P,Pian T H H.A Variational Principle and the Convergence of a Finite Element Method Based on the Assumed Stress Distribution[J].International Journal of Solids and Structures,1969,5:463-472.
  • 7Chen,M C,Sze,K Y.A Novel Finite Element Analysis of Bimaterial Wedge Problems[J].Engineering Fracture Mechanics,2001,68:1463-1476.
  • 8王清,野田尚昭,上村仁誉.正方形夹杂角部的奇异应力场[J].山东工业大学学报,2000,30(1):1-5. 被引量:1
  • 9邱信明,郭田福,黄克智.应变梯度塑性Ⅰ,Ⅱ型平面应力裂纹的有限元解[J].中国科学(A辑),2000,30(8):760-768. 被引量:4
  • 10陈少华,周喆,高玉臣.集中力拉伸楔体大变形理论分析及数值计算[J].力学学报,2000,32(1):117-125. 被引量:7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部