期刊文献+

表达结核杆菌抗原的重组酿酒酵母免疫小鼠研究 被引量:2

Induction of Antigen-specific Humoral Immune Response by Subcutaneous Vaccination with Saccharomyces cerevisiae Expressing Mycobacterium tuberculosis Antigen
原文传递
导出
摘要 近年来研究显示全细胞重组酿酒酵母疫苗具有治疗性疫苗潜能.为了研究重组酿酒酵母结核病候选疫苗的免疫效果,将IFN-γ基因与结核杆菌抗原蛋白Ag85B、ESAT6的基因融合,利用pHR酿酒酵母表达系统和同源重组方法,成功构建了以酿酒酵母Y16为宿主的表达融合蛋白IFN--γAg85B和IFN--γESAT6-Ag85B的重组酿酒酵母.Western blot证实了融合蛋白IFN--γAg85B、IFN--γESAT6-Ag85B在重组酵母内能有效表达.将热失活后的重组酿酒酵母全细胞以皮下注射方式免疫小鼠,ELISA检测小鼠血清抗体,结果显示:重组酵母能够有效激发小鼠产生Ag85B特异性IgG抗体,免疫后3周后的IgG效价明显高于免疫2周的,与表达IFN-γ-Ag85B的重组酵母相比,表达IFN--γESAT6-Ag85B的重组酵母能够更有效地诱导小鼠免疫细胞Th1型反应. Recent studies have suggested that whole recombinant Saccharomyces cerevisiae acts as a potent therapeutic vaccination against infectious diseases.For the purpose to develop novel and more efficacious vaccines against tuberculosis,IFN-γ was fused with Mycobacterium tuberculosis antigens Ag85B and ESAT6-Ag85B,and expressed in S.cerevisiae Y16 using pHR S.cerevisiae expression system.Western blot demonstrated that fusion proteins IFN-γ-Ag85B(IA) and IFN-γ-ESAT6-Ag85B(IEA)were expressed successfully in yeast.Humoral immune response in mice was investigated after subcutaneous vaccination with the heat-killed whole recombinant yeasts Y16-IA and Y16-IEA.Both Y16-IA and Y16-IEA could induce high Ag85B-specific IgG response,and IgG titer in mouse serum after vaccination 3 times increased significantly than that after vaccination 2 times.Compared with Y16-IA,Y16-IEA increased IgG2a/IgG1 ratio,which indicated that recombinant yeast Y16-IEA could induce Th1 type response more effectively than Y16-IA.These results suggest that recombinant S.cerevisiae expressing M.tuberculosis antigen may be developed to be an effective vaccine candidate for the control of tuberculosis.
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2011年第2期192-198,共7页 Journal of Fudan University:Natural Science
基金 上海市基础研究重点项目(08JC1401100) 国家传染病防治重大专项(2008ZX10003-013(5))资助项目
关键词 结核杆菌 抗原 酿酒酵母 体液免疫 结核病 疫苗 Mycobacterium tuberculosis antigen Saccharomyces cerevisiae humoral immune response tuberculosis vaccine
  • 相关文献

参考文献15

  • 1WHO. Guidelines for intensified tuberculosis case-finding and isoniazid preventive therapy for people living with HIV in resource-constrained settings [EB/OL]. (2010-10-28)[2010-11-04]. http://www. who. int/tb/puhlications/2010/en/index, html.
  • 2Dietrich J, Doherty T M. Interaction of Mycobacterium tuberculosis with the host: consequences for vaccine development[J]. APMIS, 2009,117(5 6): 440-457.
  • 3Barker L F, Brennan M J, Rosenstein P K, et al. Tuberculosis vaccine research: the impact of immunology[J]. Current Opinion in Immunology , 2009,21(3) : 331-338.
  • 4Sable S B, Verma I, Khuller G K, et al. Multicomponent antituberculous subunil vaccine based on immunodominant antigens of Mycobacterium tuberculosis[J]. Vaccine, 2005,23(32) : 4175 -4184.
  • 5Coler R N, Dillon D C, Skeiky Y A, et al. Identification of Mycobacterium tuberculosis vaccine candidates using human CD4^+ T-cells expression cloning[J]. Vaccine, 2009,27(2): 223 -233.
  • 6Hoft D F. Tuberculosis vaccine development: goals, immunological-design, and evaluation[J]. Lancet, 2008,372(9633) : 164-175.
  • 7Stubhs A C, Martin K S, Coeshott C, et al. Whole recombinant yeast vaccine activates dendritic cells and elicits protective cell mediated immunity[J]. Nature Medicine, 2001,7(5): 625- 629.
  • 8Bernstein M B, Chakraborty M, Wansley E K, et al. Recombinant Saccharomyces cerevisiae (yeast CEA) as a potent activator of routine dendritic cells[J]. Vaccine, 2008,26(4): 509-521.
  • 9Hovav A H, Fishman Y, Bercovier H. Gamma interferon and monophosphoryl lipid A-trehalose dicornomycolate are efficient adjutants for Mycobacterium tuberculosis multivalent acellular vaccine[J]. Infection and Immunity, 2005,73(1) : 250-257.
  • 10Galao R P, Scheller N, Alves Rodrigues I, et al. Saccharomyces cerevisiae: a versatile eukaryotic system in virology[J]. Microbial Cell Factories, 2007,6: 32-32.

同被引文献33

  • 1张丽杰,邸进申,全学军,赵天涛,张雪莲,李英杰.诱变选育高产海藻糖的酵母菌株[J].生物技术,2005,15(1):31-33. 被引量:7
  • 2McAleer W J, Buynak E B, Maigctter R Z, ct al. Human hepatitis B vaccine fromrecombinant yeast. Nature, 1984, 307: 178-180.
  • 3Celik E, Calik P. Production of recombinant proteins by ycast cells. Biotechnology Advances, 2012, 30 : 1108-1118.
  • 4Miura S, Dwiarti L, Arimura T, et al. Enimnced production of I,- lactic acid by ammonia-tolerant mutant strain Rhizopus sp. MK- 96-1196. J Biosci Bioeng, 2004, 97( 1 ) :19-23.
  • 5Alper H, Fischer C, Nevoigl E, el al. Tuning genetic control through promoter engineering. PNAS, 2005, 102 (36) : 12678- 12683.
  • 6Par'tow S, Siewers V, Sara Bjcrn S, et al. Characterization of different promoters for designinga new expression vcxstor in Saccharomyces cerevisiae. Yeast, 2010; 27: 955-964.
  • 7BIount B A, Weenink T. Ellis T. Construction of synthetic regulatory networks in yeast. FEBS Letters, 2012, 586: 2112- 2121.
  • 8Yu J, Jian J X, Ji W M, et al. Glucose-free fructose production from Jerusalem artichoke using a recombinant inulinase-secreting Saccharomyces cerevisiae strain. Biotechnol Lett, 2011, 33 : 147- 152.
  • 9Gietz R D, Schiestl R H. Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/ PEG method. Nat Protoc, 2007, 2 ( 1 ) : 1-4.
  • 10Cline J, Braman J C, Hogrefe H H. PCR fidelity of Pfu DNA polymerase and other thermostable DNA polymerases. Nucleic Acids Res, 1996, 24: 3546-3551.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部