期刊文献+

平面(kN+1)体问题正多边形解的简明数值方法

A CONCISE NUMERICAL ANALYSIS OF REGULAR POLYGON SOLUTIONS FOR(kN+1)-BODY PROBLEM
下载PDF
导出
摘要 讨论平面kN或(kN+1)体问题正多边形解的数值方法.依照力学原理,建立正多边形解的条件方程组,把解微分方程组的问题,转化为解非线性方程组的问题.当质点的质量给定时,用牛顿迭代法解条件方程组.如果给定正多边形的外接圆半径,直接解线性的条件方程组就可以获得答案. A numerical solution for coplanar (κN+1) body problem is provided. Constraint equations satisfying the coplanar N-body system is set up according to Newtonian dynamic principle. The problem of solving a set of differential equations is transformed into solving a nonlinear set of equations. With the mass of each object in the system given, solution to constraint equations can be obtained by Newtonian iteration. On the other hand, solution to the linear set of constraint equations is obtained if radius of circle enclosing each regular polygon is given.
作者 刘文忠
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第2期134-137,共4页 Journal of Beijing Normal University(Natural Science)
基金 国家自然科学基金资助项目(10473002,10373004) 科技部国家基础科学规划“973”资助项目(2009CB24901)
关键词 (kN+1)体问题 正多边形解 数值方法 (κN+l)-body problem regular polygon solution numerical method
  • 相关文献

参考文献16

  • 1Ruschi M, Calogero F. Solvable and/or integrable and/ or linearizable N-body problems in ordinary (three- dimensional ) space. I [ J ]. Journal of Nonlinear Mathematical Physics, 2000, 7 (3) : 303.
  • 2Perko L M, Walter E L. Regular polygon solutions of the N-body problem[J]. Proc AMS, 1985, 94:301.
  • 3Xie Z F, Zhang S Q. A simpler proof of regular polygon solutions of the N-body problem[J]. Physics Letters A, 2000, 277..156.
  • 4Kalvouridis T J. Retrograde orbits in ring configurations of N-bodies[J].. Astrophysics and Space Science, 2003, 284(3): 1013.
  • 5Elmabsout B. Nonlinear instability of some relative equilibrium configurations in the ( n + 1 )-body problem [J]. Romanian Astronomical Journal, 1996, 6:61.
  • 6Kalvouridis T J. Periodic solutions in the ring problem [J].Astrophysics and Space Science, 1999, 266(4):467.
  • 7赵甫荣,邓春华.共面n+1体中心构型[J].西南民族大学学报(自然科学版),2009,35(1):67-72. 被引量:3
  • 8Zhang S Q, Zhou Q. Nested regular polygon solutions for planar 2N-body problems[J]. Science in China Series A, 2002, 45(8) :1053.
  • 9Zhang S Q, Zhou Q. Periodic solutions for planar 2N- body problems[J]. Proc Amer Math Soc, 2003, 131;2161.
  • 10Ferrario D. Central configurations, symmetries and fixed points[EB/OL]. [2004-09-01]. http://xxx, lanl. gov/PScache/math/pdf/0204/0204198, pdf.

二级参考文献33

  • 1苏霞,温书.四体问题的平行四边形中心构型[J].淮阴工学院学报,2006,15(5):15-19. 被引量:3
  • 2汤建良.关于4-体问题中心构型的一点研究[J].系统科学与数学,2006,26(6):647-650. 被引量:2
  • 3刘文中,徐玢,王欢,张同杰.N体问题的“蜂窝型”中心构型[J].北京师范大学学报(自然科学版),2006,42(6):576-578. 被引量:3
  • 4Abraham R. and Marsden J., Foundations of Mechanics[M], (2nd ed). London: Benjamin/ Cummings, 1978.
  • 5Darwin G H, Periodic Orbits[M], London. Cambridge Univ. Press. , 1941
  • 6Elmabsout B. , Sur L'existence des certaines configurations d'equilibre relatif dans le probleme des N corps[J], Celest. Mech. 1988,41(2) :131-151.
  • 7Marcus M. and Mine H. , A survey of matrix theory and matrix inequalities[M], Allyn and Bacon, Boston, Mass, 1964.
  • 8MacMillan W. D. and Bartky W. , Permanent configurations in the problem of four bodies[J], Trans. AMS 1932,34(10) :838-874.
  • 9Moeekel R. and Simo C. , Bifurcation of spatial central configurations from planar ones[J], SIAM J, Math. Anal. 1995,26(4) :978-998.
  • 10Perko L.M. and Walter E. L. , Regular polygon solutions of the N-body problem,Proc. AMS 1985, 94(2) : 301-309.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部