期刊文献+

摄动椭圆参考轨道上的最优精确交会 被引量:2

Fuel-optimal Precise Rendezvous Guidance Law in Elliptical Reference Orbit with J_2 Perturbation
下载PDF
导出
摘要 针对椭圆参考轨道附近的交会问题,给出了数值梯度寻优算法和遗传寻优算法用于确定最优转移时间和最优双脉冲,并解决了双脉冲半圈交会和整圈交会的奇异问题。在此基础上,考虑地球J2带谐项对相对运动的影响,给出了采用线性梯度的迭代算法,并将其用于摄动下的燃料最优双脉冲交会制导。采用不同偏心率的参考轨道进行了交会仿真,结果表明该迭代交会制导算法简单可行,适用于圆参考轨道和任意偏心率的椭圆参考轨道附近的远距离交会。 For rendezvous near an elliptical reference orbit,a numerical gradient algorithm and a genetic algorithm for optimization were adopted to determine the optimal transfer time and impulses.The solutions for half-revolution and complete-revolution rendezvous were also given to eliminate the singularities.Based on the optimization algorithms,a two-impulse iteration method with linear gradient was proposed for rendezvous guidance to eliminate the impact of J2 perturbation on relative motion.The simulation results of rendezvous near reference orbit with different eccentricities show that the guidance algorithm is simple,feasible and can be used in remote rendezvous near circle and arbitrary elliptical reference orbit.
出处 《中国空间科学技术》 EI CSCD 北大核心 2011年第2期16-24,78,共10页 Chinese Space Science and Technology
关键词 线性梯度 迭代算法 轨道摄动 椭圆轨道 交会对接 航天器 Linear gradient Iterative algorithm Orbit perturbation Elliptical orbit Rendezvous and docking Spacecraft
  • 相关文献

参考文献7

  • 1KECHICHIAN JEAN ALBERT. Motion in general elliptic orbit with respect to a dragging and presessing coordinate frame [J]. The Journal of the Astronautical Sciences 1998, 46 (1) : 25-45.
  • 2GIM DONG WOO, ALFRIEND KYLE TERRY. State transition matrix of relative motion for the perturbed noncircular reference orbit [J]. Journal of Guidance, Control, and Dynamics, 2003, 26 (6): 956-971.
  • 3SENGUPTA PRASENJIT, VADALI SRINIVAS RAO, ALFRIEND KYLE TERRY. Averaged relative motion and applications to formation flight near perturbed orbits [J]. Journal of Guidance, Control, and Dynamics, 2008, 31 (2): 258-272.
  • 4YAMANAKA KOJI, ANKERSEN FINN. New state transition matrix for relative motion on an arbitrary elliptical orbit [J]. Journal of Guidance, Control, and Dynamics, 2002, 25 (1): 60-66.
  • 5JIANG FANGHUA, LI JUNFENG, BAOYIN HEXI, et al. Two-point boundary value problem solutions to spacecraft formation flying [J]. Journal of Guidance, Control, and Dynamics, 2009, 32 (6): 1827-1837.
  • 6GOODING ROBERT H. A procedure for the solution of Lambert's orbital boundary-value problem [J]. Celestial Mechanics and Dynamical Astronomy, 1990, 48 (2): 145-165.
  • 7XU GUANGYAN, WANG DANWEI. Nonlinear dynamic equations of satellite relative motion around an oblate earth [J]. Journal of Guidance, Control, and Dynamics, 2008, 31 (5): 1521-1524.

同被引文献23

  • 1杏建军,唐国金,郗晓宁,张翼,李海阳.椭圆参考轨道编队卫星非线性周期性相对运动条件[J].清华大学学报(自然科学版),2006,46(8):1462-1465. 被引量:2
  • 2林来兴.空间交会对接技术[M].北京:国防工业出版社,1995..
  • 3杨乐平,朱彦伟,黄涣.航天器相对运动轨迹规划与控制[M].北京:国防工业出版社,2010: 5341.
  • 4ESCOUBET C, FEHRINGER M, GOLDSTEIN M. In- troduction the cluster mission [ J]. Annales Geophysi- cae, 2001, 19(1) :1197-1200.
  • 5CURTIS S. The magnetospheric muhiscale mission: re- solving fundamental processes in space plasmas [ C ]// Report Conference of the NASA Science and Technology Definition Team for the Magnetospheric Muhiscale Mis- sion, Washington: NASA, 1999 : 1-10.
  • 6SENGUPTA P, Vadali S. Relative motion and the geome- try of formations in keplerian elliptic orbits [J]. Journal of Guidance, Control and Dynamics, 2007, 30 (4) :953-964.
  • 7YAMADA K, SHIMA T, YOSHIKAWA S. Effects of perturbation on formation flights around an eccentric ref- erence orbit [ J]. Journal of Space Engineering, 2008, 1 ( 1 ) :69-78.
  • 8SENGUPTA P, VADALI S R. Relative motion and the ge- ometry of formations in keplerian elliptic orbits [ J ]. Guid- ance, Control and Dynamics, 2007, 30(4): 953-964.
  • 9MAGNUS J R, NEUDECKER H. Matrix differential calculus with applications in statistics and econometrics [ M]. New York: Wiley Press, 1999:103-105.
  • 10Clohessy W H, Wiltshire R S.Terminal guidance system for satellite rendezvous[J].Journal of Aerospace Science.1960, 27(9):653-658.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部