期刊文献+

The Markov-Dependent Risk Model with a Threshold Dividend Strategy

The Markov-Dependent Risk Model with a Threshold Dividend Strategy
原文传递
导出
摘要 This paper studies a Markov-dependent risk model in which the claim occurrence and the claim amount are regulated by an external discrete time Markov process. Integro-differential equations in matrix form for the Gerber-Shiu discounted penalty function are presented. Then the analytical solutions to the equations are derived. Finally, in the two-state model, some numerical results are obtained when claim amount is exponentially distributed. This paper studies a Markov-dependent risk model in which the claim occurrence and the claim amount are regulated by an external discrete time Markov process. Integro-differential equations in matrix form for the Gerber-Shiu discounted penalty function are presented. Then the analytical solutions to the equations are derived. Finally, in the two-state model, some numerical results are obtained when claim amount is exponentially distributed.
出处 《Wuhan University Journal of Natural Sciences》 CAS 2011年第3期193-198,共6页 武汉大学学报(自然科学英文版)
基金 Supported by the Science Technology Foundation of Hubei Province (D20092207) the Hubei Normal University Post-Graduate Foun-dation (2010C17)
关键词 Markov-dependent threshold dividend strategy Gerber-Shiu function analytical solution Markov-dependent threshold dividend strategy Gerber-Shiu function analytical solution
  • 相关文献

参考文献14

  • 1Asmussen S, Taksar M. Controlled diffusion models for optimal dividend pay-out[J]. Insurance: Mathematics and Economics, 1997, 20: 1-15.
  • 2Albrecher H, Claramunt M M, Marmol M. On the distribution of dividend payments in a Sparre Andersen model with generalized Erlang(n) interclaim times [J]. Insurance: Mathematics and Economics, 2005, 37: 324-334.
  • 3Asmussen S. Ruin Probabilities[M]. Singapore: World Scientific, 2000.
  • 4Burton T A. Volterra Integral and Differential Equations[M]. Singapore: World Scientific, 2005.
  • 5Albrecher H, Boxma O. On the discounted penalty function in a Markov-dependent risk model[J]. Insurance: Mathematics and Economics, 2005, 37: 650-672.
  • 6Gerber H U, Shiu E W. The time value of ruin in a Sparre Anderson model: ruin theory by dividend differences[J]. North American Actuarial Journal, 2006, 9(2): 49-69.
  • 7Gerber H U, Shiu E S W. On optimal dividend strategies in the compound Poisson model[J]. North American Actuarial Journal, 2006, 10(3): 68-84.
  • 8Lin X S, Pavlova K P. The compound Poisson risk model with a threshold dividend strategy[J]. Insurance: Mathematics and Economics, 2006, 38: 617-627.
  • 9Lin X S, Willmot G E, Drekic S. The classical risk model with a constant dividend barrier: Analysis of the Gerber-Shiu discounted penalty function[J]. Insurance: Mathematics and Economics, 2003, 33: 551-566.
  • 10Li S, Lu Y. Moments of the dividend payments and related problems in a Markov-modulated risk model[J]. North American Actuarial Journal, 2007, 2: 65-76.

二级参考文献2

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部