期刊文献+

改进的PSO算法在RFID网络调度中的应用 被引量:6

Improved Particle Swarm Optimizer for RFID Network Planning
下载PDF
导出
摘要 为在寻优过程中有效地保持算法的种群多样性,提出了一种改进的PSO(Particle Swarm Optimization)算法——PSOPC(Particle Swarm Optimizer based on Predator-prey Coevolution)。PSOPC算法将生态系统中捕食者和猎物的竞争协同进化机制嵌入到PSO算法中。基于PSOPC进行RFID(Radio Frequency IDentification)读写器网络调度模型的求解,根据读写器冲突关系的变化在线进行读写器的时隙分配求解与控制,在不影响读写器工作效率的同时,有效消除密集读写器环境下的读写器冲突问题,并优化整个读写器网络的工作效率。 In order to improve PSO's performance on complex engineering problems, it presents a variant of PSO (Particle Swarm Optimization) called PSOPC (Particle Swarm Optimizer based on Predator-prey Coevolution), which takes into account the predator-prey behavior therefore high species diversity can be maintained as the whole population evolves. PSOPC is then applied to schedule RFID (Radio Frequency Identification) networks by assigning time slot to RFID readers on-line whereby reader collision can be minimized to ensure the current operation of the RFID system. Simulation results demonstrate that the PSOPC algorithm is more feasible and efficient than PSO in solving this real-world problem.
出处 《吉林大学学报(信息科学版)》 CAS 2011年第2期121-127,共7页 Journal of Jilin University(Information Science Edition)
基金 国家自然科学基金资助项目(60832002) 国家自然科学国际合作基金资助项目(609111301281) 吉林大学科学前沿与交叉学科创新基金资助项目(200903297) 吉林省自然科学基金资助项目(20101515) 吉林省科技发展计划重点基金资助项目(20090302)
关键词 计算机技术 射频识别 协同进化 读写器调度 粒子群优化算法 生态捕食模型 种群多样性 computer technology radio frequency identification (RFID) coevolution reader progress par-ticle swarm optimization (PSO) algorithm predator-prey model species diversity
  • 相关文献

参考文献13

  • 1EBERCHART R C, KENNEDY J. A New Optimizer Using Particle Swarm Theory [ C ] ///Proceedings of the 6th International Svmoosium on Micromachine and Human Science. Nagoya, Japan: [ s. n. ], 1995: 5943.
  • 2KENNEDY J, EBERCHART R C. Particle Swarm Optimization [ C ] //Proceedings of the IEEE International Conference on Neural Networks. Perth, Australia: [ s. n. ] , 1995: 1942-1945.
  • 3ELKAMCHOUCHI H M, ELRAGAL H M, MAKAR M A. Cellular Radio Network Planning Using Particle Swarm Optimiza- tion [C/OL] //Proceeding of the2007 Radio Science Conference. 2007:1-8[2010-09]. http: //ieeexpiore. ieee. org/ xpls/abs-all, jsp? arnumber =4234136tag = 1.
  • 4KARABOGA D, BASTURK B. On the Performance of Articial Bee Colony (ABC) Algorithm [ J ]. Applied Soft Computing, 2008, 8 (1): 687-697.
  • 5SHI Y, EBERHART R, EMPIRICAL C. Study of Particle Swarm Optimization [ C] ,//Proceeding of the World Multiconference on Syatemics Cybernetics and Informatics. Orlando, FL: [s. n. ] , 2000: 1995-1950.
  • 6CLERK M. Binary Particle Swarm Optimisers : Toolbox, Derivations, and Mathematical Insights [ EB/OL ]. [ 2010-05 ]. (2005-02-02). http: //clerc. maurice, free. fr/pso/.
  • 7NIU Ben, ZHU Yun-long, He Xiao-xian, et al. A Multi-Swarm Cooperative Particle Swarm Optimizer [ J ]. Applied Mathematics and Computation, 2007, 185 (2) : 1050-1062.
  • 8CLERC M. Binary Particle Swarm Optimizers: Toolbox, Derivations, and Mathematical Insights [ EB/OL ]. [ 2010-05 ]. [2005-02]. http: //clerc. maurice, free. fr/pso.
  • 9LIANG J J, SUGANTHAN P N, DED K. Novel Composition Test Functions for Numerical Global Optimization [ C/OL] ,// Proceeding of the 2005 Swarm Intelligence Symposium2005 : 68-75 [ 2101-09 ]. http : // ieeexplore, ieee. ory/xpls/absall. jsp? arnumber = 1501604.
  • 10唐阔,胡国圣,车喜龙,胡亮.基于遗传算法优化支持向量回归机的网格负载预测模型[J].吉林大学学报(理学版),2010,48(2):251-255. 被引量:6

二级参考文献38

  • 1臧雪柏,管欣,赵坤,唐觅.一种新的网格任务调度策略[J].吉林大学学报(工学版),2004,34(3):502-506. 被引量:2
  • 2胡亮,胡德斌,汤磊,孟繁二.网格资源性能监控[J].吉林大学学报(信息科学版),2005,23(1):42-49. 被引量:9
  • 3王飞,刘大有,王淞昕.基于遗传算法的Bayesian网结构增量学习的研究[J].计算机研究与发展,2005,42(9):1461-1466. 被引量:9
  • 4胡亮,车喜龙,唐阔.网格应用程序的性能预测策略[J].吉林大学学报(理学版),2005,43(6):794-798. 被引量:2
  • 5Chickering D M. Learning Bayesian Networks Is NP-complete [C]//Learning from Data. Berlin: Springer, 1996: 121-130.
  • 6Chickering D M, Heckerman D, Meek C. Large-sample Learning of Bayesian Networks Is NP-hard [ J ]. Journal of Machine Learning Research, 2004, 5 : 1287-1330.
  • 7Judea P. Probabilistic Reasoning in Intelligent Systems [ M]. San Francisco: Morgan Kaufmann, 1988.
  • 8Cooper G F, Herskorits E. A Bayesian Method for the Induction of Probabilistic Networks from Data [ J ]. Machine Learning, 1992, 9(4): 309-347.
  • 9I-Ieckerman D, Geiger D, Chickering D M. Learning Bayesian Networks: the Combination of Knowledge and Statistical Data [J]. Machine Learning, 1995, 20(3): 197-243.
  • 10Lain W, Bacchus F. Learning Bayesian Belief Networks: an Approach Based on the MDL Principle [ J ]. Computational Intelligence, 1994, 10 (3) : 269-293.

共引文献8

同被引文献41

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部