摘要
为研究电力系统电压动态稳定性,应用分叉理论,基于电力系统动态模型,提出了一种寻求平衡解流形上动、静分叉点的新方法。将系统雅可比矩阵特征复平面进行特定的映射变换,从而只需了解映射后特征复平面上的最大模特征值的表现,即可确定系统动态稳定性性态。此方法具有计算量小、适用面广以及物理、几何意义明确的特点。运用这种方法对电力系统电压动态稳定性进行研究。
In order to study the voltage dynam icstability ofpow ersystem , a new analysis m ethod forsearching forthe static and dynam ic bifurcation points on the equilibrium solution m anifold is obtained by using the bifurcation theory with pow er system dynam ic m odels. Specificim aging transform iscarried outon the system Jacobian m atrix eigenvaluecom plex plane. So the dynam ic stability ofthe system can be determ ined by the m axim um m odules eigenvalue on the eigenvalue com plex plane after im aging transform . This new m ethod is noted for its little calculation w ork, wide application range and the clear significance ofphysics and geom etry. The application to an exam ple show s thatthis m ethod is effective and practical.
出处
《电力系统自动化》
EI
CSCD
北大核心
1999年第21期32-36,共5页
Automation of Electric Power Systems
关键词
电力系统
电压稳定性
分义理论
动态模型
bifurcation voltage dynam ic stability eigenvalue plane im aginar