摘要
运用系统方法理论研究社会系统取决于模型系统选取的合理程度. 由动力学变量决定的社会态函数所提供的信息可以定义Shannon 社会熵. 定态社会系统的产生熵可以描述社会系统的不可逆过程并且是一个很好的Ляпунов函数,它使我们对定态自组织的社会系统的整体稳定性充满自信.社会系统的Fokker-Planck 方程及其定态解的时间发展行为可以解释社会系统的非平衡相变. 尤以知识结构的创新对社会系统的发展壮大以致于出现非平衡相变都起着决定性的作用.
To study social system by using system theory relies on the reasonability of the model\|system. The social state\|function of dynamical change offers information which is defined as social entropy. The production entropy of social system of stable state may describe non\|reversible process of social system and it is one good Ляпунов\|function and make us feel confident to the total stability of social system of stable state. The Fokker\|Planck equation of the social system and its solution of stable state may explain non\|equilibrium phase transition of social system, more specifically, the innovation of knowledge\|structure has decisive role to the development, even non\|equilibrium phase transition of social system.
出处
《系统工程理论与实践》
EI
CSCD
北大核心
1999年第10期20-26,共7页
Systems Engineering-Theory & Practice
关键词
社会系统
大系统
系统方法
非平衡相变
shannon entropy of social system
social state of a person
social value of a person
demand potential of society
generalized force of society
generalized flow of society
Prigogine theorem of minimum production entropy
Fokker\|Planck equation
Lang