期刊文献+

基于动量粒子群优化的社会网络分析 被引量:2

Analysis of Social Networks Based on the Momentum Particle Swarm Optimization
下载PDF
导出
摘要 针对社会网络分析中的社区发现问题,在原有的粒子群优化算法的基础上,提出了一种基于动量粒子群优化算法,并且将此算法应用于社会网络分析中的社区发现研究中,提出了一种自适应社区发现方法.利用Newman提出的模块度作为适应度函数,在优化过程中自动获取社区数目,在Karate网络上的实验结果表明,所提出的算法能够有效地进行社区预测,并且获得了较高的预测精度. In terms of social network analysis, a new momentum particle swarm optimization algorithm based on the original thoughts of PSO was proposed. By this algorithm, the social network analysis was applied to solve community detection problems. An adaptive community discovery algorithm based on momentum particle swarm optimization was further proposed. By using Newman's modularity as fitness function, the number of communities in the optimization process was obtained. Experiments on Karate network showed that the algorithm could effectively predict the community and obtain perfect prediction accuracy.
出处 《郑州大学学报(理学版)》 CAS 北大核心 2011年第2期38-42,共5页 Journal of Zhengzhou University:Natural Science Edition
基金 中央高校基本科研业务费专项资金资助项目
关键词 社会网络分析 动量粒子群优化 社区发现 social network analysis momentum particle swarm optimization community discovery
  • 相关文献

参考文献10

  • 1Scott J. Social Network Analysis: a Handbook[M]. 2nd ed. London: Sage Publications,2000:113-119.
  • 2West D B. Introduction to Graph Theory[M]. 2nd ed. Upper Saddle River: Prentice Hall,2001:87-92.
  • 3Girvan M, Newman M E J. Community structure in social and biological networks[J]. The National Academy of Sciences of the United States of America, 2002, 99(12):7821-7826.
  • 4Newman M E J, Girvan M. Finding and evaluating community structure in networks[J]. Physical Review E,2004,69 (2) :026113.
  • 5Kennedy J, Eberhart R. Particle swarm optimization[C]//IEEE International Conference on Neural Networks. Australia, 1995 : 1942-1948.
  • 6李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 7段晓东,王存睿,刘向东,林延平.基于粒子群算法的Web社区发现[J].计算机科学,2008,35(3):18-21. 被引量:18
  • 8Newman M E J. Fast algorithm for detecting community structure in networks[J]. Physical Review E,2004,69(6) :321- 330.
  • 9Radicchi F,Castellano C,Cecconi F, et al. Defining and identifying communities in networks[C]//Proceedings of the National Academy of Sciences. USA, 2004 : 2658-2663.
  • 10Parsopoulos K, Vrahatis M. On the computation of all global minimizers through particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2004,8 (3) : 211-224.

二级参考文献24

  • 1杨楠,弓丹志,李忺,孟小峰.Web社区发现技术综述[J].计算机研究与发展,2005,42(3):439-447. 被引量:35
  • 2Kennedy J, Eberhart R. Particle swarm optimization [A]. Proc of Int'l Conf on Neural Networks [C]. Piscataway: IEEE Press, 1995. 1942-1948.
  • 3Eberhart R, Kennedy J. A new optimizer using particle swarm theory [A]. Proc of Int'l Symposium on Micro Machine and Human Science [C]. Piscataway: IEEE Service Center, 1995. 39-43.
  • 4Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization [A].In: Furuhashi T,Mckay B,eds. Proc Congress on Evolutionary Computation [C]. Piscataway: IEEE Press, 2001.
  • 5Lovbjerg M, Rasmussen T K, Krink T. Hybrid particle swarm optimiser with breeding and subpopulations [A]. In: Spector L,eds. Proc of Genetic and Evolutionary Computation Conference [C]. San Fransisco: Morgan Kaufmann Publishers Inc, 2001. 469-476.
  • 6Carlisle A, Dozier G. Adapting particle swarm optimization to dynamic environments [A]. In: Arabnia H R,eds. Proc of Int'l Conf on Artificial Intelligence [C]. Las Vegas: CSREA Press, 2000. 429-434.
  • 7Parsopoulos K E, Vrahatis M N. Particle swarm optimization method in multiobjective problems [A]. In: Panda B,eds. Proc of ACM Symposium on Applied Computing [C]. Boston: ACM Press, 2002. 603-607.
  • 8Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space [J]. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58-73.
  • 9GareyMR, Johnson DS. Computers and Intractability:AGuide to the Theory of NP-Completeness. San Franeisco: W H Freeman, 1979
  • 10Wu F, Huberman B A. Finding communities in linear time: A physics approach[J]. Euro Phys J B, 2003,38: 331-338

共引文献414

同被引文献96

引证文献2

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部