期刊文献+

利用多抽样率滤波实现DHT的实值离散Gabor变换 被引量:1

Multirate filtering for DHT-based real-valued discrete Gabor transform
下载PDF
导出
摘要 基于多抽样率滤波原理,设计了分析和综合滤波器组,分别用于实现(基于DHT核函数的)离散Gabor展开与变换,提出了新的实值离散Gabor展开与变换快速并行算法。在并行算法中,由于总计算复杂性分摊于多个结构一致并能够利用快速一维离散快速Hartley变换(N点1-DDHT)的并行通道,因此并行算法的计算时间取决于单个并行通道的计算复杂性。而每一并行通道的计算复杂性非常小,所以分析和综合滤波器组的处理速度是相当快的。将所提出的算法与当前最快的并行算法进行了比较,结果表明基于多抽样率滤波实现的实值离散Gabor展开与变换快速并行算法对实时信号处理十分有利。 Novel and fast parallel algorithms for DHT-based real-valued discrete Gabor expansion and transform are presented based on multirate filtering.An analysis filter bank is designed for DHT-based real-valued discrete Gabor transform and a synthesis filter bank is designed for DHT-based real-valued discrete Gabor expansion.Each of the parallel channels in the two filter banks has a unified structure and can apply the DHT to reduce its computational load.The computational complexity of the proposed parallel algorithms is analyzed and compared with that of the major existing parallel DGT and DGE algorithms, the results indicate that the proposed parallel algorithms for DHT-based real-valued discrete Gabor expansion and transform based on multirate filtering are very attractive for real time signal processing.
作者 袁书萍 陶亮
出处 《计算机工程与应用》 CSCD 北大核心 2011年第12期102-105,共4页 Computer Engineering and Applications
基金 国家自然科学基金No.60572128 安徽省高校省级自然科学重点研究项目 安徽省电子制约技术重点实验室研究项目~~
关键词 离散Gabor展开与变换 离散哈特利变换(DHT) 多抽样率滤波 完全重建 分析和综合滤波器组 discrete Gabor expansion and transform Discrete Hartley Transform(DHT) multirate filtering perfect reconstruc- tion analysis and synthesis filter banks
  • 相关文献

参考文献8

  • 1Gabor D.Theory of communication[J].J Inst Electr Eng,1946,93(3):429-457.
  • 2Wang L,Chan C T,Lin W C.An efficient algorithm to compute the complete set of discrete Gabor coefficients[J].IEEE Transafions on Image Processing,1994,3(1):87-92.
  • 3Wexler J,Raz S.Discrete Gabor expansions[J].Signal Processing,1990,21(3):207-220.
  • 4Qian S,Chen D.Siscrete Gabor transform[J].IEEE Transactions on Signal Processing,1993,41(7):2429-2438.
  • 5Morris J M,Liu Y.Discrete Gabor expansion of discrete-time signals in p(Z)via frame theory[J].IEEE Signal Processing Magazine,1994,40(2):151-181.
  • 6Lu C,Joshi S,Morris J M.Parallel lattice structure of block timerecursive generalized Gabor transforms[J].Signal Processing,1997,57(2):195-203.
  • 7陶亮,庄镇泉.Univied Parallel Lattice Structures for Block Time—Recursive Real—Valued Duiscrete Gabor Transforms[J].Journal of Computer Science & Technology,2003,18(1):90-96. 被引量:1
  • 8Tao L,Kwan H K.Real discrete Gabor expansion for finite and infinite sequences[C]/Proceedings of the 2000 IEEE International Symposium on Circuits and Systems,Geneva,Switzerland,2000,4:637-640.

二级参考文献14

  • 1Gabor D. Theory of communication. J. Inst. Electr.Eng., 1946, 93(III): 429-457.
  • 2Bastiaans M. Gabor's expansion of a signal into Gaussian elementary signals. In Proc. IEEE, 1980, 68: 538-539.
  • 3Wexler J, Raz S. Discrete Gabor expansions. Signal Processing. 1990, 21(3): 207-220.
  • 4Qian s, Chen D. Discrete Gabor transforms. IEEE Trans. Signal Processing, 1993, 21(7): 2429-2438.
  • 5Qian s, Chen D. Joint time-frequency analysis. IEEE Signal Processing Magazine, 1999, 6(2): 52-67.
  • 6Wang Liwa et al. An efficient algorithm to compute the complete set of discrete Gabor coefficients. IEEE Trans.Image Processing, 1994, 3(1): 87-92.
  • 7Qiu Sigang, Zhou Feng, Crandall Phyllis E. Discrete Gabor transforms with complexity O(N log N). Signal Processing, 1999, 77(2): 159-170.
  • 8Tao Liang et al, Real discrete Gabor expansion for finite and infinite sequences. In Proc. 2000 IEEE International Symposium on Circuits and Systems, Geneva,Switzerland, May 28-31, 2000, IV: 637-640.
  • 9Tao Liang, Chen G J. Real-valued discrete Gabor transforms for discrete signal and image representation. Chinese Journal of Electronics, 2001, 10(4): 444-449.
  • 10Tao Liang, Kwan H K. 1D and 2D real-valued discrete Gabor transforms. In Proc. 43rd IEEE Midwest Symposium on Circuits and Systems, Michigan, USA, Aug.8-11, 2000, I: 1182-1185.

同被引文献11

  • 1Gabor D.Theory of communication[J].J Inst Electr Eng, 1946,93(3) :429-457.
  • 2Wexler J,Raz S.Discrete Gabor expansions[J].Signal Pro- cessing, 1990,21 (3) : 207-220.
  • 3Qian S,Chen D.Discrete Gabor transform[J].IEEETrans- actions on Signal Processing, 1993,41 (7) : 2429-2438.
  • 4Morris J M,Liu Y.Discrete Gabor expansion of discrete- time signals in 12 (Z) via frame theory[J].IEEE Signal Processing Magazine, 1994,40(2) : 151-181.
  • 5Daugman J.Complete discrete 2-D Gabor transform by neural networks for image analysis and compression[J]. IEEE Trans on Acoust, Speech, Signal Processing, 1988, 36(7) : 1169-1179.
  • 6Lu C, Joshi S, Morris J M.Parallel lattice structure of block time-recursive generalized Gabor transforms[J].Sig- nal Processing, 1997,57(2) : 195-203.
  • 7Tao L, Kwan H K.Novel DCT-based real-valued dis- crete Gabor transform and its fast algorithms[J].IEEE Transactions on Signal Processing, 2009,57 (6) : 2151-2164.
  • 8Tao L, Kwan H K.Multirate-based fast parallel algo- rithms for 2-D DHT-based real-valued discrete Gabor transform[J].IEEE Transactions on Image Processing, 2012,21(7),3306-3311.
  • 9Tao L, Kwan" H K.Real discrete Gabor expansion for finite and infinite sequences[C]//Proceedings of the 2000 IEEE International Symposium on Circuits and Sys- tems, Geneva, Switzerland, 2000,4 : 637-640.
  • 10Tao L, Kwan H K.Parallel lattice structures of block time-recursive discrete Gabor transform and its inverse transform[J].Signal Processing,2008,88(2) :407-414.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部