期刊文献+

用决策树指导TBL进行多音字消歧 被引量:1

Polyphone disambiguation based on tree-guided TBL
下载PDF
导出
摘要 多音字消歧是普通话语音合成系统中字音转换模块的核心问题。选择了常见易错的33个多音字和24个多音词作为研究对象,构建了一个平均每个多音字(词)5000句的语料库,并且提出了一种结合决策树和基于转换的错误驱动的学习(Transformation-Basederror-driven Learning,TBL)的混合算法。该方法根据决策树的指导,自动生成TBL算法的模板,避免了手工总结模板这一费时费力的过程。实验结果表明,该方法生成的模板与手工模板性能相当,其平均准确率达90.36%,明显优于决策树。 Polyphone disambiguation is the core issue of the grapheme-to-phoneme conversion in Mandarin Text-To-Speech ('ITS) system.This paper selects 33 key polyphones and 24 key polyphonic words which are most ambiguous and frequently used as study objects,and builds a polyphone corpus of 5 000 sentences per polyphone on average.Furthermore,a hybrid algorithm called Tree-Guided Transformation-Based Leaming(TGTBL),which combines decision tree with Transformation-Based error-driven Leaming(TBL),is proposed to resolve the polyphonic ambiguity.It automatically generates TBL templates,thereby avoiding manually summarizing templates, which is time-consuming and laborious in conventional TBL.Results of comparative experiments show that, for the task of polyphone disambiguation, templates automatically generated by decision tree achieve comparable performance to manually summarized templates,and the average precision of TGTBL reaches 90.36%,siguificantly higher than that of decision tree.
作者 刘方舟 周游
出处 《计算机工程与应用》 CSCD 北大核心 2011年第12期137-140,共4页 Computer Engineering and Applications
基金 湖南省科技计划项目(No.2010FJ4131) 湖南省教育厅科研项目(No.10C0955)
关键词 多音字消歧 字音转换 决策树 基于转换的错误驱动的学习(TBL) polyphone disambiguation grapheme-to-phoneme decision tree Transformation-Based error-driven Leaming(TBL)
  • 相关文献

参考文献8

  • 1Yarowaky D.Homograph disambiguation in speech synthesis[M]//Santen J,Sproat R,Olive J,et al.Progress in speech synthesis.New York:Springer-Verlag,1996:159-175.
  • 2Wang Wern-jun,Hwang Shaw-hwa,Chen Sin-horag.The broad study of homograph disambiguity for mandarin speech synthesis[C]//Proc 4th International Conference on Spoken Language Processing,Philadelphia,1996:1389-1392.
  • 3Zhang Zi-rong,Chu Min.An efficient way to learn rules for grapheme-to-phoneme conversion in Chinese[C]//Proc 3rd International Symposium on Chinese Spokon Language Processing,Taipci,2002:233-236.
  • 4胡国平,陈志刚,王仁华.基于规则及 SVM 权值训练的汉语多音字自动消歧研究[C]//Proc 20th International Conference on Computer Processing of Oriental Languages,Shonyang,2003:599-605.
  • 5Zheng Min,Shi Qin.Grapheme-to-phoneme conversion based on TBL algorithm in Mandarin TTS system[C]//Proc 6th Annual Conference of the International Speech Communication Association,Lisbon,2005:1897-1900.
  • 6Brill E.Tranformation-based error-driven learning and natural language processing:A case study in part of speech tagging[J].Computational Linguistics,1995,21(4):543-565.
  • 7Ramshaw L,Marcus M.Text chunking using transformation-based lesming[M]//Armstrong S,Church K,Isabelle P,et al.Natural language processing using very large corpora.Dordrecht:Kluwer Academic Publishers,1999:82-94.
  • 8Brill E.Learning to parse with transformations[M]//Bunt H,Tomita M.Recent advances in parsing technology.Dordrecht:Kluwer Academic Pubfishers,1996:221-240.

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部