期刊文献+

结合VAM和模糊逻辑的NSCT图像融合方法

Image fusion based on NSCT using VAM and fuzzy logic
下载PDF
导出
摘要 提出一种基于非下采样Contourlet变换(NSCT)的图像融合方法。NSCT分解具有平移不变性,有利于更好地保持原始图像的边缘信息和轮廓结构。由于图像融合任务的不确定性及模糊逻辑在处理该类问题时的优越性,在高低频的融合策略中引入模糊逻辑进行基于隶属度的融合。同时考虑到人类视觉感兴趣区域的重要性,在低频系数的融合中引入视觉注意机制,利用原始图像本身的显著区域信息来指导融合过程,从而在融合过程中最大限度地保留源图像中的显著信息。实验结果表明,算法的融合图像具有良好的视觉效果及客观评指标。 A method of image fusion based on Non-Subsampled Contourlet Transform(NSCT) is proposed.NSCT which is fully shift-invariant can maintain the edges information and the contour of original image.To handle the uncertainty of the contribution of the source images to the fused image,fuzzy logic is adopted to the fusion strategy.Considering of the impor- tance of interesting regions,Visual Attention Mechanism(VAM) is adopted to guide the fusion procedure by the salient information of the source images.The experimental results show the fused images of proposed algorithm have favorable visual effect and objective measures.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第12期173-176,共4页 Computer Engineering and Applications
基金 国家自然科学基金 No.60971120 广东省自然科学基金(No.9151009001000052)~~
关键词 图像融合 视觉注意机制 非下采样轮廓波变换(NSCT) 模糊逻辑 隶属度函数 图像分割 image fusion visual attention mechanism Non-Subsampled Contourlet Transform(NSCT) fuzzy logic member-ship function image segmentation
  • 相关文献

参考文献9

  • 1Cunha A L,Zhou J,Do M N.The nonsubsampled contourlet transform:Theory,design,and applications[J].IEEE Transactions on Image Processing,2006,15(10):3089-3101.
  • 2Yang L,Guo B L,Ni W.Multimodality medical image fusion based on multiscale geometric analysis of contourlet transform[J].Neurocomputing,2008,72:203-211.
  • 3Miao Qiguang,wang Baoshu.A novel image fusion algorithm based on human vision system[C]//Proceedings of SPIE,Multisensor,Multisource Information,Orlando,Kissimmee,2006:1-8.
  • 4Piella G.Image fusion for enhanced visualization:A variational approach[J].Intemational Journal of Computer Vision,2009,83(1):1-11.
  • 5Bahmani H,Nasrabadi A M,Gholpayeghani M R H.Nonlinear data fusion in saliency-based visual attention[C]//4th International IEEE Conference on Intelligent Systems,Varna,2008.
  • 6Chen S,Wu Y.Image fusion based on contourlet Iransform and fuzzy logic[C]//2nd International Congress on Image and Signal Processing,Tianjin,2009:1-5.
  • 7Itti L.Models of bottom-up and top-down visual attention[D].California:California Institute of Technology,2000.
  • 8Wang Haibo,Zhang Jing,Wang Liwei.Segmentation of thoracic CT image based on FCM clustering[C]//3rd International Con ference on Advanced Computer Theory and Engineering,Chengdu,2010:405-408.
  • 9胡涛,郭宝平,郭轩,杨欧.基于改进游程连通分析的快速目标描述算法[J].光电工程,2009,36(2):116-121. 被引量:4

二级参考文献13

  • 1徐利华,陈早生.二值图像中的游程编码区域标记[J].光电工程,2004,31(6):63-65. 被引量:31
  • 2ROSENFELD A, PFALTZ J L. Sequential Operations in Digital Picture Processing [J]. Journal of the ACM(S0004-541), 1966, 13(4): 471-494.
  • 3ROSENFELD A, KAK A C. Digital Picture Processing [M]. New York: Academic Press, 1982: 241-242.
  • 4SONKA M, HLAVAC V, BOYLE R. Image Processing, Analysis, and Machine Vision [M]. Thomson-Engineering, 1996: 232-235.
  • 5LUMIA R, SHAPIRO L, ZUNIGA O. A New Connected Components Algorithm for Virtual Memory Computers [J]. Computer Vision, Graphics, and Image Processing, 1983, 22(2): 287-300.
  • 6HARALICK R H, SHAPIRO L. Computer and Robot Vision [M]. Academic Press, 1992: 33-37.
  • 7GONZALES R, WOODS R. Digital Image Processing [M]. Addison-Wesley, 1992: 42-45.
  • 8KLETTE R, ZAMPERONI E Handbook of Image Processing Operators [M]. New York: John Wiley & Sons, 1996: 314-319.
  • 9Di STEFANO L, BULGARELLI A. A Simple and Efficient Connected Components Labeling Algorithm [C]// International Conference on Image Analysis and Processing, Venice, Italy, Sept 27-29, 1999. Washington D C, USA: IEEE, 1999: 322-327.
  • 10SAMET H. Connected Component Labeling Using Quadtrees [J]. Journal of the ACM(S0004-541), 1981, 28(3): 487-501.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部