期刊文献+

非线性复合邻域人脸光照补偿 被引量:1

Facial illumination compensation based on nonlinear local remediation
下载PDF
导出
摘要 变化的光照是提高人脸正确检测率的瓶颈,提出了非线性复合邻域光照补偿方法来解决人脸检测的光照问题。非线性复合邻域光照补偿方法用对数函数做为基函数,设置的平移系数和分界值系数可以同时对过亮和偏光的图像进行补偿,引入了邻域光照补偿公式解决了传统非线性方法不能针对同一灰度值像素在不同局部应该进行不同补偿的问题。实验结果表明,该方法对过暗和过亮的人脸图像都可以进行有效的光照补偿,熵比较优于传统非线性光照补偿、Gamma校正和直方图归一化。 The variation of illumination is a choke point of imporving the rate of correct face detection.To deal with this problem,this paper proposes an illumination compensation method of nonlinear local illumination remediation.The nonlinear local remediation uses logarithm function as primary function.It meets human visual trait;and sets up two coefficients of offset and one coefficient of Gamma division.Thus this method is able to compensate all types of image through adjusting these coefficients;and introduces a local illumination remediation formula to resolve the nonlinear problem,which uses sole formula to compensate illumination in all local area.Experimental results show that this method is effective in compensating images of over-lighting,over-shading,and partial-lighting,surpasses traditional nonlinear transformation and Gamma correction
作者 郑伟华 戴永
出处 《计算机工程与应用》 CSCD 北大核心 2011年第13期195-198,共4页 Computer Engineering and Applications
关键词 光照补偿 人脸检测 非线性变换 复合变换 非线性复合邻域光照补偿 illumination compensation face detection nonlinear transformation composite transformation nonlinear local illumination remediation
  • 相关文献

参考文献3

二级参考文献33

  • 1卿来云,山世光,陈熙霖,高文.基于球面谐波基图像的任意光照下的人脸识别[J].计算机学报,2006,29(5):760-768. 被引量:27
  • 2Phillips P.J,Moon H,Rizvi S.A.et al.The FERET evaluation methodology for face-recognition algorithms.IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(10):1090~1104
  • 3Phillips P.J,Grother P,Micheals R.J.et al.FRVT 2002:Evaluation Report.http://www.frvt.org/DLs/FRVT _2002 _ Evaluation _Report.pdf,March 2003
  • 4Hallinan P..A low-dimensional representation of human faces for arbitrary lighting conditions.In:Proceedings of the CVPR'94,Seattle,Washington,1994,995~999
  • 5Basri R,Jacobs D..Lambertian reflectance and linear subspaces.In:Proceedings of the ICCV'01,Vancouver,Canada,2001,383~390
  • 6Ramamoorthi R..Analytic PCA construction for theoretical analysis of lighting variability in images of a lambertian object.IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(10):1~12
  • 7Ramamoorthi R,Hanrahan P..On the relationship between radiance and irradiance:Determining the illumination from images of a convex Lambertian object.Journal of the Optical Society of America A,2001,18(10):2448~2459
  • 8Blanz V,Vetter T..Face recognition based on fitting a 3D morphable model.IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(9):1~12
  • 9Sim T,Kanade T..Combining models and exemplars for face recognition:An illuminating example.In:Proceedings of the Workshop on Models Versus Exemplars in Computer Vision of CVPR'01,Kauai,Hawaii,2001
  • 10Zhao W.Y,Chellappa R..Illumination-insensitive face recognition using symmetric shape-from-shading.In:Proceedings of the CVPR'00,Hilton Head Island,South Carolina,2000,1286~1293

共引文献41

同被引文献21

  • 1王华,王祁,孙金玮.基于自相关函数的自然纹理图像分形维数的估计[J].北京航空航天大学学报,2004,30(8):718-722. 被引量:9
  • 2董文会,曲培树,吴晓娟,徐祗军.复杂背景下多姿态人脸图像中的人眼检测[J].山东大学学报(工学版),2006,36(3):18-21. 被引量:4
  • 3HSU R L, MOHAMED A M, JAIN A K. Face detection in color images [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5) :696-706.
  • 4BHUIYAN M A, AMPORNARAMVETH V, MUTO S Y, et al. Face detection and facial feature localization for human-machine interface[J]. NII Journal, 2003 ( 05 ): 25- 39.
  • 5LI S Z, ZHANG Zhenqiu. Float boost learning and statistical face detection [ J ]. IEEE Transactions Pattern Analysis and Machine Intelligence, 2004, 26 (9) : 1112-1123.
  • 6TSAI Chunming, YEH Zongmu. Contrast compensation by fuzzy classification and image illumination analysis for back-lit and front-lit color face images [J]. IEEE Transactions on Consumer Electronics, 2010, 56 ( 3 ) : 1570-1578.
  • 7ATSUSHI Z, NISHIDA A. Statistical-noise effect on autocorrelation function of line-edge and line-width roughness [J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2010, 28 (6) : 1242-1250.
  • 8KURITA T, OTSU N, SATO T. A face recognition method using higher order local autocorrelation and multivariate analysis [C]//Proceedings of 11th IAPR. Hague: IEEE Computer Society, 1992:213-216.
  • 9HOTTA K, KUBRITA T, MISHIMA T. Scale invariant face detection method using higher-order local autocorre- lation features extracted from log-polar image [C]// Proceedings of IEEE Automatic Face and Gesture Recognition. Nara Japan: IEEE Computer Society, 1998:70-75.
  • 10李全彬,孙巧榆,刘锦高,李明.复杂背景和光照多变的人脸检测方法[J].计算机工程与应用,2009,45(18):22-24. 被引量:8

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部