期刊文献+

基于最优邻域图的等距映射流形学习算法 被引量:3

Improved isometric mapping algorithm for manifold learning based on optimal neighborhood graph
下载PDF
导出
摘要 现有的等距映射算法对邻域参数的选择较为敏感,而且对噪声干扰缺乏足够的鲁棒性。基于平均最短路径与邻域参数的变化关系与平均最短路径梯度提出了一种构建最优邻域图的方法,基于该方法构建的邻域图几乎没有短路边;可以根据每个数据点的不同特性采用可变的邻域参数;对数据点间的测地距有更好的逼近。实验表明:算法不仅对均匀采样、无噪声干扰的数据集有更好的降维性能,而且对噪声干扰的数据集有较强的鲁棒性与拓扑稳定性。 The recent isometric mapping algorithms are sensitive to selecting an appropriate neighborhood size,and present in- sufficient noise tolerance.Based on the relationship of the average shortest distance with the neighborhood size and the aver- age shortest distance gradient,this paper proposes a new method for constructing the optimal neighbor graph from a data set, which has few short-circuit edges,and better approximates the geodesic distances between the data points.Furthermore,for dif- ferent points the neighborhood sizes are adaptive variant with the local characteristics of the data points.Experimental results show that the proposed method yields better performances for symmetrically sampling data points free of noise than the re- cent methods.It is also shown that the topologically stability and degree of noise tolerance can be significantly improved
出处 《计算机工程与应用》 CSCD 北大核心 2011年第14期124-127,145,共5页 Computer Engineering and Applications
基金 陕西省自然科学基础研究计划基金(No.2009JM8002)
关键词 邻域图 平均最短路径 平均最短路径梯度 测地距 等距映射 the neighborhood graphs average shortest distance average shortest distant gradient geodesic distance isometric mapping
  • 相关文献

参考文献15

  • 1Cox T, Cox M.Multidimensional scaling[M].London:Chapman & Hall, 1994.
  • 2Jolliffe I T.Principal component analysis[M].New York: Springer-Verlag, 1986.
  • 3Bishop C, Svensen M, Williams C.GTM: the generative topographic mapping[J].Neural Computation, 1998,10( 1 ).
  • 4Kohonan T.Self-organization and associative memory[M].Berlin: Springer-Verlag, 1988.
  • 5Bregler C, Omohundro S.Nonlinear image interpolation using manifold leaming[M]//Tesauro G, Touretzky D, leen T.Advances in Neural Information Processing Systems 7.Cambridge: MIT Press, 1995: 973-980.
  • 6DeMers D, Cottrell G.Non-linear dimensionality reduction[M]// Hanson D, Cowan J, Giles L.Advances in Neural Information Processing System 5.San Mateo:CA,1993.
  • 7Tenenbaum J,de Silva V,Landford J.A global geometric framework for nonlinear dimensionality reduction[J].Science, 2000, 290: 2319-2323.
  • 8Roweis S, Saul J.Nonlinear dimensionality reduction by locally linear embedding[J].Science, 2000,290: 2323-2326.
  • 9Belkin M,Niyogi P.Laplcian eigenmaps for dimensionality reduction and data representation[J].Neural Computation, 2003, 15: 1373-1396.
  • 10de Silva V,Tenenbaum J B,Langford J C.Local versus global methods for nonlinear dimensionality rcduction[C]//Advances in Neural Information Processing Systems 15 (Proceedings of NIPS' 03).Cambridge: MIT Press, 2003.

二级参考文献11

  • 1Tenenbaum JB.Mapping a manifold of perceptual observations.In:Jordan MI,Kearns MJ,Solla SA,eds.Advances in Neural Information Processing Systems 10.Denver:MIT Press,1997.682-689.
  • 2Tenenbaum JB,de Silva V,Langford JC.A global geometric framework for nonlinear dimensionality reduction.Science,2000,290(22):2319-2323.
  • 3Roweis ST,Saul LK.Nonlinear dimensionality reduction by locally linear embedding.Science,2000,290(22):2323-2326.
  • 4Balasubramanian M,Schwartz EL,Tenenbaum JB,de Silva V,Langford JC.The ISOMAP algorithm and topological stability.Science,2002,295(5552):7.http://www.sciencemag.org/cgi/content/full/295/5552/7a
  • 5Kouropteva O,Okun O,PietikAainen M.Selection of the optimal parameter value for the locally linear embedding algorithm.In:Wang L,Halgamuge SK,Yao X,eds.Proc.of the 1st Int'l Conf.on Fuzzy Systems and Knowledge Discovery:Computational Intelligence for the E-Age.Singapore,2002.359-363.http://www.ee.oulu.fi/research/imag/document/publications/FSKD02.pdf
  • 6Shao C,Huang HK.Selection of the optimal parameter value for the isomap algorithm.In:Gelbukh A,de Albornoz A,Terashima H,eds.Proc.of the 4th Mexican Int'l Conf.on Artificial Intelligence.Monterrey:Springer-Verlag,2005.396-404.
  • 7Zhou ZH,Cao CG.Neural Networks and Its Applications.Beijing:Tsinghua University Press,2004.172-207 (in Chinese).
  • 8Bernstein M,de Silva V,Langford JC,Tenenbaum JB.Graph approximations to geodesics on embedded manifolds.Technical Report,Stanford University,2000.http://isomap.stanford.edu/BdSLT.pdf
  • 9Lee JA,Lendasse A,Verleysen M.Nonlinear projection with curvilinear distances:ISOMAP versus curvilinear distance analysis.Neurocomputing,2004,57(1):49-76.
  • 10Carreira-Perpinán MA.A review of dimension reduction techniques.Technical Report,CS-96-09,Sheffield:University of Sheffield,1996.46-53.

共引文献37

同被引文献28

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部