期刊文献+

On the Optimal Controller for LTV Measurement Feedback Control Problem 被引量:1

On the Optimal Controller for LTV Measurement Feedback Control Problem
下载PDF
导出
摘要 In this paper,we consider the measurement feedback control problem for discrete linear time-varying systems within the framework of nest algebra consisting of causal and bounded linear operators.Based on the inner-outer factorization of operators,we reduce the control problem to a distance from a certain operator to a special subspace of a nest algebra and show the existence of the optimal LTV controller in two different ways:one via the characteristic of the subspace in question directly,the other via the duality theory.The latter also gives a new formula for computing the optimal cost. In this paper,we consider the measurement feedback control problem for discrete linear time-varying systems within the framework of nest algebra consisting of causal and bounded linear operators.Based on the inner-outer factorization of operators,we reduce the control problem to a distance from a certain operator to a special subspace of a nest algebra and show the existence of the optimal LTV controller in two different ways:one via the characteristic of the subspace in question directly,the other via the duality theory.The latter also gives a new formula for computing the optimal cost.
出处 《Journal of Mathematical Research and Exposition》 CSCD 2011年第3期393-401,共9页 数学研究与评论(英文版)
基金 Supported by the National Natural Science Foundation of China (Grant No.10971020)
关键词 LTV systems nest algebra CONTROL optimal controller duality. LTV systems nest algebra control optimal controller duality.
  • 相关文献

参考文献22

  • 1DJOUADI S M, LI Yanyan. On the computation of the gap metric for LTV systems [J]. Systems Control Lett., 2007, 56(11-12): 753-758.
  • 2LU Yufeng, xu Xiaoping. The stabilization problem for discrete time-varying linear systems [J]. Systems Control Lett., 2008, 57(11): 936-939.
  • 3FEINTUCH A. Optimal robust disturbance attenuation for linear time-varying systems [J]. Systems Control Lett., 2002, 46(5): 353-359.
  • 4DJOUADI S M. Optimal robust disturbance attenuation for continuous time-varying systems [J]. Internat. J. Robust Nonlinear Control, 2003, 13(13): 1182-1193.
  • 5FEINTUCH A, FRANCIS B A. Uniformly optimal control of lineax feedback systems [J]. Automatica J. IFAC, 1985, 21(5): 563-574.
  • 6FEINTUCH A, KHARGONEKAR P, TANNENBAUM A. On the sensitivity minimization problem for linear time-varying periodic systems [J]. SIAM J. Control Optim., 1986, 24(5): 1076-1085.
  • 7DARYIN A N, KURZHANSKI A B, VOSTRIKOV I V. The Control of Linear Systems under Feedback Delays [M]. Vienna Conference on Mathematical Modelling, 2009.
  • 8LIU M, ZHANG H, DUAN G. H∞ Measurement Feedback Control for Time Delay Systems Via Kiein Space [M]. American Control Conference, June 8-10, 2005, Portland, pp. 4010-4015.
  • 9DMITRUK N, FINDEISEN R, ALLGOWER F. Optimal Measurement Feedback Control of Finite-Time Continuous Linear Systems [M]. Proceedings of the 17th World Congress, the International Federation of Automatic Control, Seoul, Korea, July 6-11, 2008, pp.15339-15344.
  • 10KURZHANSKI A B. On the Problem of Measurement Feedback Control: Ellipsoidal Techniques [M]. Birkhauser Boston, Boston, MA, 2005.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部