摘要
Let R and S be a left coherent ring and a right coherent ring respectively,RωS be a faithfully balanced self-orthogonal bimodule.We give a sufficient condition to show that l.FP-idR(ω) ∞ implies G-dimω(M) ∞,where M ∈ modR.This result generalizes the result by Huang and Tang about the relationship between the FP-injective dimension and the generalized Gorenstein dimension in 2001.In addition,we get that the left orthogonal dimension is equal to the generalized Gorenstein dimension when G-dimω(M) is finite.
Let R and S be a left coherent ring and a right coherent ring respectively,RωS be a faithfully balanced self-orthogonal bimodule.We give a sufficient condition to show that l.FP-idR(ω) ∞ implies G-dimω(M) ∞,where M ∈ modR.This result generalizes the result by Huang and Tang about the relationship between the FP-injective dimension and the generalized Gorenstein dimension in 2001.In addition,we get that the left orthogonal dimension is equal to the generalized Gorenstein dimension when G-dimω(M) is finite.
基金
Supported by the Ph. D. Program Foundation of Ministry of Education of China (Grant No.200803570003)