期刊文献+

A Note on FP-Injective Dimension

A Note on FP-Injective Dimension
下载PDF
导出
摘要 Let R and S be a left coherent ring and a right coherent ring respectively,RωS be a faithfully balanced self-orthogonal bimodule.We give a sufficient condition to show that l.FP-idR(ω) ∞ implies G-dimω(M) ∞,where M ∈ modR.This result generalizes the result by Huang and Tang about the relationship between the FP-injective dimension and the generalized Gorenstein dimension in 2001.In addition,we get that the left orthogonal dimension is equal to the generalized Gorenstein dimension when G-dimω(M) is finite. Let R and S be a left coherent ring and a right coherent ring respectively,RωS be a faithfully balanced self-orthogonal bimodule.We give a sufficient condition to show that l.FP-idR(ω) ∞ implies G-dimω(M) ∞,where M ∈ modR.This result generalizes the result by Huang and Tang about the relationship between the FP-injective dimension and the generalized Gorenstein dimension in 2001.In addition,we get that the left orthogonal dimension is equal to the generalized Gorenstein dimension when G-dimω(M) is finite.
出处 《Journal of Mathematical Research and Exposition》 CSCD 2011年第3期462-466,共5页 数学研究与评论(英文版)
基金 Supported by the Ph. D. Program Foundation of Ministry of Education of China (Grant No.200803570003)
关键词 generalized Gorenstein dimension FP-injective dimension left orthogonal dimension. generalized Gorenstein dimension FP-injective dimension left orthogonal dimension.
  • 相关文献

参考文献1

二级参考文献4

  • 1Zhaoyong Huang.Wt-approximation representations over quasik-Gorenstein algebras[J].Science in China Series A: Mathematics.1999(9)
  • 2Yoichi Miyashita.Tilting modules of finite projective dimension[J].Mathematische Zeitschrift.1986(1)
  • 3Hoshino,M.Algebras of finite self-injective dimension, Proc.Amer. Math[].Soe.1991
  • 4Huang,Z. Y.On a generalization of the Auslander-Bridger transpose, Comm[].Journal of Algebra.1999

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部