期刊文献+

New Rapidly Convergent Series Concerning ζ(2k+1)

New Rapidly Convergent Series Concerning ζ(2k+1)
下载PDF
导出
摘要 Values of new series sum(((2n-1)!ζ(2n))/(2n + 2k)!)α2n from n=1 to ∞,sum(((2n-1)!ζ(2n))/(2n+2k +1)!)β2n from n=1 to ∞ are given concerning ζ(2k + 1),where k is a positive integer,α can be taken as 1,1/2,1/3,2/3,1/4,3/4,1/6,5/6 and β can be taken as 1,1/2.Some previous results are included as special cases in the present paper and new series converges more rapidly than those exsiting results for α = 1/3,or α = 1/4,or α = 1/6. Values of new series sum(((2n-1)!ζ(2n))/(2n + 2k)!)α2n from n=1 to ∞,sum(((2n-1)!ζ(2n))/(2n+2k +1)!)β2n from n=1 to ∞ are given concerning ζ(2k + 1),where k is a positive integer,α can be taken as 1,1/2,1/3,2/3,1/4,3/4,1/6,5/6 and β can be taken as 1,1/2.Some previous results are included as special cases in the present paper and new series converges more rapidly than those exsiting results for α = 1/3,or α = 1/4,or α = 1/6.
出处 《Journal of Mathematical Research and Exposition》 CSCD 2011年第3期521-527,共7页 数学研究与评论(英文版)
基金 Supported by the National Natural Science Foundation of China (Grant No. 10571095) Ningbo Natural Science Foundation (Grant No. 2009A610078) Research Fund of Ningbo University (Grant No. xkl09042)
关键词 Riemann zeta function rapidly convergent series. Riemann zeta function rapidly convergent series.
  • 相关文献

参考文献13

  • 1RAMANUJAN S. Notebooks ofSrinivasa Ramanujan (2 vols.) [M]. Tata Institute of Fundamental Research, Bombay, 1957.
  • 2BERNDT B C. Modular transformations and generalizations of several formulae of Ramanujan [J]. Rocky Mountain J. Math., 1977, 7(1): 147-189.
  • 3BERNDT B. Ramanujan's Notebooks, Part H [M]. Springer, New York, 1989.
  • 4APERY R. Irrationalitd de ζ(2) et ζ(3) [J]. Asterisque, 1979, 61: 11-13.
  • 5COHEN H. G'eneralisation-d'une construction de-R.Apery[J]. Bull. Soc. Math. France, 1981, 109(3): 269-281. (in French).
  • 6A J Van der Poorten. A proof of Euler missed ... Apery's proof of the irrationality of ζ(3) [J]. Math. Intelligencer, 1979, 1(4): 195-203.
  • 7LESHCHINER D. Some new identities for ζ(k) [J]. J. Number Theory, 1981, 13(3): 355-362.
  • 8BUTZER P L, MARKETT C, SCHMIDT M. Stirling numbers, central factorial numbers, representation of the Riemann zeta function [J]. Resultate Math., 1991, 19: 257-274.
  • 9EWELL J A. A new series representation for ζ(3) [J]. Amer. Math. Monthly, 1990, 97(3): 219-220.
  • 10EWELL J A. On values of the Riemann zeta function at integral arguments [J]. Canad. Math. Bull., 1991, 34(1): 60-66.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部