期刊文献+

一类偏积分-微分方程中的反问题

The Inverse Problem in a Partial Integro-Differential Equation
下载PDF
导出
摘要 对一类偏积分-微分方程中参数校准的反问题进行研究.在弱解的框架下,原问题可转化为含具体正则化项的最优化问题.文中证明了该最优化问题的解的存在性和稳定性,并考察了最优解存在的一阶必要条件.另外,证明了当正则化参数足够大时,该最优化问题关于参数a的凸性性质.基于偏积分-微分方程反问题的研究对于金融市场中的模型校准问题具有重要的意义. The paper is concerned with the inverse problem of determining the parameters in a partial integro differential equation. By establishing the problem in the sense of weak solution, the inverse problem is converted into a regularized optimization problem with concrete regularized term. The author derives the existence, stability and the first order optimality condition for the optimization problem. Furthermore, the optimization problem is proved to be convex on function a if the regularization parameter is appropriately chosen. The research has important application to model calibration problem in the financial market.
作者 徐惠芳
出处 《数学年刊(A辑)》 CSCD 北大核心 2011年第2期141-160,共20页 Chinese Annals of Mathematics
基金 国家重点基础研究发展计划(No.2007CB814904)资助的项目
关键词 反问题 偏积分-微分方程 最优化 正则化 FRECHET可微 跳-扩散 局部波动率模型 Inverse problem, PIDE, Optimization, Regularization, Frechetdifferential, Jump diffusion, Local volatility
  • 相关文献

参考文献14

  • 1Cont R, Tankov P. Financial modelling with jump processes [M]. Boca Raton: Chapman and Hall/CRC, 2004.
  • 2Lagnado R, Osher S. A technique for calibrating derivative security pricing models: numerical solution of the inverse problem [J]. Journal of Computational Finance, 1997, 1:13-25.
  • 3Jiang L, Tao Y. Identifying the volatility of underlying assets from option prices [J]. Inverse Problems, 2001, 17:137 155.
  • 4Achdou Y, Pironneau O. Numerical procedure for calibration of volatility with American options [J]. Applied Mathematical Finance, 2005, 12:201-241.
  • 5Engl H W, Hanke M, Neubauer A. Regularization of inverse problems [M]. Dordrecht: Kluwer, 1996.
  • 6Crepey S. Calibration of the local volatility in a generalized Black-Scholes model using Tikhonov regularization [J]. SIAM Journal on Mathematical Analysis, 2003, 34:1183-1206.
  • 7Andersen L, Andreasen J. Jump-diffusion processes: volatility smile fitting and mmerical methods for option pricing [J]. Review of Derivatives Research, 2000, 4:231-262.
  • 8Dupire B. Pricing with smile [J]. Risk, 1994, 7:18-20.
  • 9Merton R. Option pricing when underlying stock returns are discontinuous [J]. Journal of Financial Economics, 1976, 3:124-144.
  • 10Coleman T, Li Y, Verma A. Reconstructing the unknown local volatility function [J]. Journal of Computational Finance, 1999, 2:77-102.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部