期刊文献+

脉冲输入免疫因子的HBV模型的稳定性和持久性分析 被引量:2

Analysis of Stability and Permanence for an HBV Model with Impulsive Releasing Immune Factor
下载PDF
导出
摘要 提出了一个数学模型,用于研究脉冲投放免疫因子对HBV传染病动力学的影响.通过利用脉冲微分不等式和比较定理,证明了HBV模型的无病周期解的存在性,给出了无病周期解的全局渐近稳定性和系统的持续性的充分条件.研究结果表明:短的投放周期或适当的免疫因子投放量可以导致HBV的清除. A mathematical modeL is proposed to study the transmission dynamics of hep atitis B virus (HBV) treated with impulsive releasing immune factor. Using the impulsive differential inequality and comparative theorem, the authors investigate the existence of infection free periodic solution of the impulsive HBV system, the sufficient conditions for the global asymptotic stability of the infection free periodic solution and for the permanence of HBV. Analysis results indicate that a short releasing period of the immune factor or a proper pulse releasing quantity leads to the eradication of the HBV.
出处 《数学年刊(A辑)》 CSCD 北大核心 2011年第2期173-184,共12页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.60774036) 湖北省自然科学基金重点项目(No.2008CDA063) 中央高校基本科研业务费专项资金优秀青年教师基金(No.CUGL100238)资助的项目
关键词 乙型肝炎病毒 数学模型 药物治疗 全局渐近稳定性 Hepatitis B virus, Mathematical model, Drug treatment, Globalasymptotic stability
  • 相关文献

参考文献1

共引文献1

同被引文献17

  • 1刘小利,王少杨,翟嵩,庄严,李新红,康文臻,于旭,Marcus Altfeld,Bruce Walker,孙永涛.HAART治疗20例艾滋病患者疗效评估[J].中国艾滋病性病,2006,12(2):101-104. 被引量:27
  • 2赵红心,张福杰,郜桂菊,于兰,卢联合,文毅,韩宁,赵燕,李鑫.国产抗逆转录病毒药物联合中药新血片治疗HIV/AIDS患者24周临床研究[J].中国艾滋病性病,2006,12(4):297-299. 被引量:10
  • 3杜丽华,王玲.AIDS疫苗的研究策略及其进展[J].中国现代医学杂志,2007,17(3):312-316. 被引量:1
  • 4庞国萍,陶凤梅,陈兰荪.具有饱和传染率的脉冲免疫接种SIRS模型分析[J].大连理工大学学报,2007,47(3):460-464. 被引量:10
  • 5Huiyan Zhu,Yang Luo,Meiling Chen.Stability and Hopf bifurcation of a HIV infection model with CTL-response delay[J]. Computers and Mathematics with Applications . 2011 (8)
  • 6Robert J. Smith,B. D. Aggarwala.Can the viral reservoir of latently infected CD4 + T cells be eradicated with antiretroviral HIV drugs?[J]. Journal of Mathematical Biology . 2009 (5)
  • 7Robert J. Smith?,Elissa J. Schwartz.Predicting the potential impact of a cytotoxic T-lymphocyte HIV vaccine: How often should you vaccinate and how strong should the vaccine be?[J]. Mathematical Biosciences . 2008 (2)
  • 8R.J. Smith,L.M. Wahl.Drug resistance in an immunological model of HIV-1 infection with impulsive drug effects[J]. Bulletin of Mathematical Biology . 2005 (4)
  • 9Kaifa Wang,Wendi Wang,Xianning Liu.Viral infection model with periodic lytic immune response[J]. Chaos, Solitons and Fractals . 2005 (1)
  • 10Rebecca V. Culshaw,Shigui Ruan,Raymond J. Spiteri.Optimal HIV treatment by maximising immune response[J]. Journal of Mathematical Biology . 2004 (5)

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部