期刊文献+

Chaplygin气体Euler方程组的轴对称解

Axisymmetric Solutions of the Euler System for the Chaplygin Gas
下载PDF
导出
摘要 构造了两维Chaplygin气体Euler方程组的三参数、自相似的弱解.在自相似和轴对称的假设下,两维Chaplygin气体Euler方程组可以化为无穷远边值的常微分方程组,由此得到了解的存在性和解的结构.与多方气体不同的是Chaplygin气体的Euler方程组是完全线性退化的.即使在轴向速度大于零的时候解也会出现间断现象.这些解展示了宇宙演化过程中的一些现象,例如黑洞的形成与演化以及宇宙的暴涨和膨胀. In this paper, a three parameter family of self similar weak solutions are con structed in two dimensional space for all positive time to the axisymmetric Euler equations for the Chaplygin gas. Under the self similar and axisymmetry assumptions, the equations are reduced to a system of three ordinary differential equations with boundary value at in finity, from which the detailed structures of solutions as well as their existence are obtained. Different from polytropic gas, the Euler equations for the Chaplygin gas is fully linear degen erate. Discontinuities exist even though the velocity of radially direction is positive. These solutions exhibit some phenomena, such as black hole, expansion and explosive expansion, in the evolution of universe.
出处 《数学年刊(A辑)》 CSCD 北大核心 2011年第2期193-204,共12页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10971130) 上海市重点学科建设基金(No.J50101) 上海市教委创新基金重点项目(No.11ZZ84) 新疆维吾尔自治区高校科研计划(No.XJEDU2009S11)资助的项目
关键词 Chaplygin气体的Euler方程组 完全线性退化 轴对称解 Euler system for tbe Cbap)ygin gas, Fully linear degenerate,Axisymmetric solut'lons
  • 相关文献

参考文献1

二级参考文献13

  • 1Chaplygin S A.On gas jets[J].Scientific Memoirs,Moscow University Mathematic Physics,1904,21(1063):1-121.
  • 2Tsien H S.Two dimensional subsonic flow of compressible fluids[J].Journal of Spacecraft and Rockets,2003,40(6):983-991.
  • 3von Karman T.Compressibility effects in aerodynamics[J].Journal of the Aeronautical Sciences,1941,40(6):992-1011.
  • 4Zhang T,Zheng Y X.Conjecture on structure of solution of Riemann problem for 2-D gas dynamic systems[J].SIAM Journal on Mathematical Analysis,1990,21(3):593-630.
  • 5Zhang T,Zheng Y X.Axisymmetric solutions of the Euler equations for polytropic gases[J].Archive for Rational Mechanics and Analysis,1998,142(3):253-279.
  • 6Zhang T,Zheng Y X.Exact spiral solutions of the two dimensional compressible Euler equations[J].Discrete and Continuous Dynamical System,1997,3(1):117-133.
  • 7Zheng Y X.Systems of conservation laws,twodimensional Riemann problems[M].Boston:Birkh¨auser,2001:119-193.
  • 8Brenier Y.Solutions with concentration to the Riemann problem for the one-dimensional Chaplygin gas equations[J].Journal of Mathematical Fluid Mechanics,2005,7(3):S326-S331.
  • 9Serre D.Multidimensional shock interaction for a Chaplygin gas[J].Archive for Rational Mechanics and Analysis,2009,191(3):539-577.
  • 10Guo L H,Sheng W C,Zhang T.The twodimensional Riemann problem for isentropic Chaplygin gas dynamic system[J].Communications on Pure and Applied Analysis,2010,9(2):431-458.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部