摘要
设F是平面区域D上的亚纯函数族,a,b是两个有穷非零复数.如果■ff∈F,f(z)=a■f^((k))(z)=a,ff^((k))(z)=b■f^((k+1))(z)=b,且f-a的零点重数至少为k(k≥3),那么函数族F在D内正规;当k=2时,在条件a≠4b的情况下,同样有函数族F在D内正规.
Let F be a family of meromorphic functions on domain D, a, b be two non zero distinct finite complex numbers. If Vf εF, f(z) = a= f^(k)(z) = a, f^(k)(z) = b =f^(k+l)(z) = b, and all zero points of f - a are of multiplicity at least k (k≥ 3), then F is normal on D; in the case of k = 2, if a≠4b, then F is also normal on D.
出处
《数学年刊(A辑)》
CSCD
北大核心
2011年第2期213-218,共6页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.10671067)资助的项目
关键词
亚纯函数
分担值
正规族
Meromorphic functions, Sharing values, Normal families