期刊文献+

多面体截面和小覆盖的闭子流形 被引量:2

Section of Polytope and Closed Submanifold of Small Cover
下载PDF
导出
摘要 设π:M^n→P^n是P^n上的小覆盖,S是P^n的任意一个n-1维截面.给出了π^(-1)(S)是n-1维闭子流形(或者两个相互同胚n-1维闭子流形的不交并),以及π^(-1)(S)是n-1维伪流形的充要条件. Let π^ : Mn →P^n be a small cover of P^n, S an (n- 1) dimensional section of P^n. The author deals with the relationship between S and π^-1 (S), and obtains a necessary and suKicient condition to guarantee that π-1 (S) is an (n-1) dimensional closed submanifold (or the disjoint union of two (n - 1) dimensional closed submanifolds which are homeomorphic to each other), and a necessary and sufficient condition to guarantee that π-1(S) is an (n - 1)-dimensional pseudomanifold.
作者 杨昭
出处 《数学年刊(A辑)》 CSCD 北大核心 2011年第2期237-244,共8页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10931005) 上海市自然科学基金(No.10ZR1403600)资助的项目
关键词 小覆盖 群作用 多面体 Small cover, Group action, Polytope
  • 相关文献

参考文献10

  • 1Davis M W, Januszkiewicz T. Convex polytopes, Coxeter orbifolds and torus actions [J]. Duke Math Y, 1991, 61:417-454.
  • 2Cai M Z, Chen X, Lii Z. Small covers over prisms [J]. Topology Appl, 2007, 154:2228-2234.
  • 3Choi S. The number of small covers over cubes [J]. Algebr Geom Topol, 2008, 8:2391-2399.
  • 4Kamishima Y, Masuda M. Cohomological rigidity of real Bott manitblds [J]. Algebr Geom Topol, 2009, 9:2479-2502.
  • 5Lu Z, Yu L. Topology types of 3-dimensional sinall covers [EB/OL]. arxiv:0710.4496.
  • 6Lu Z, Masuda M. Equivariant classification of 2-torus manifolds [J]. Colloq Math, 2009, 115:171-188.
  • 7Buchstaber V M, Panov T E. Torus actions and their applications in topology and combinatorics [M] //University Lecture Series. Vol 24, Providenee, RI: Amer Math Soc, 2002.
  • 8谭强波.局部标准2-torus作用和带角流形[J].数学年刊(A辑),2009,30(3):333-338. 被引量:1
  • 9Bredon G E. Introduction to compact transformation groups [M]//Pure and Applied Mathematics. Vol 46, New York: Academic Press, 1972.
  • 10MacPherson R. Equivariant invariants and linear geometry [M]//Geometric combinatorics, IAS/Park City Math. Vol 13, Providence, RI: Amer Math Soc, 2007:317-388.

二级参考文献9

  • 1Davis M. W. and Januszkiewicz T., Convex polytopes, Coxeter orbifolds and torus actions [J], Duke Math. J., 1991, 61:417-454.
  • 2Lu Z. and Yu L., Topology types of 3-dimensional small covers [EB/OL], (2007-11-25) [2008-02-10], http://arxiv.org/abs/0710.4496v3.
  • 3Izmestiev I. V., Three-dimensional manifolds defined by a coloring of the faces of a simple polytope [J], Math. Notes, 2001, 69(3-4):340-346.
  • 4Nakayama H. and Nishimura Y., The orientability of small covers and coloring simple polytopes [J], Osaka J. Math., 2005, 42(1):243-256.
  • 5Davis M. W., Groups generated by reflections and aspherical manifolds not covered by Euclidean space [J], Annals of Mathematics, 1983, 117:293-324.
  • 6Lu Z., 2-torus manifolds, cobordism and small covers [EB/OL], (2007-01-31) [2008-02- 10], http://arxiv.org/abs/math/0701928.
  • 7Lu Z. and Masuda M., Equivariant classification of 2-torus manifolds [EB/OL], (2008- 02-16) [2008-03-10], http://arxiv.org/abs/0802.2313.
  • 8Bao Z. Q. and Lii Z., Manifolds associated with (Z2)^n-colored regular graphs [EB/OL], (2008-02-12) [2008-03-10], http://arxiv.org/abs/math/0609557.
  • 9Bredon G. E., Introduction to Compact Transformation Groups [M], New York: Academic Press, 1972.

同被引文献4

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部