期刊文献+

广义向量平衡问题的对偶 被引量:2

Duality for generalized vector equilibrium problem
原文传递
导出
摘要 首先利用Fenchel共轭函数的方法引入了广义向量平衡问题的对偶问题,然后在稳定性条件的假设下,讨论了广义向量平衡问题的解与其对偶问题的解之间的关系. A dual scheme for a generalized vector equilibrium problem is introduced by using the method of Fenchel conjugate function.Under the stabilization condition,the relationships between the solutions of generalized vector equilibrium problem(GVEP) and dual generalized vector equilibrium problem(DGVEP) are discussed.
作者 孙祥凯 程莹
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第3期249-252,256,共5页 Journal of Yunnan University(Natural Sciences Edition)
基金 中央高校基本科研业务费资助项目(CDJXS10100011)
关键词 广义向量平衡问题 次微分 对偶向量平衡问题 共轭函数 generalized vector equilibrium problem subdifferential dual generalized vector equilibrium problem conjugate function
  • 相关文献

参考文献12

  • 1BLUM E, OETrLI W. From optimization and variational inequalities to equilibrium problems [ J ]. Mathematics Students, 1994,63 : 123-145.
  • 2CHADLI O, RIAHI H. On generalized vector equilibrium problems[ J]. Journal of Global Optimization,2001,16:33-41.
  • 3CHADLI O, CHIANG Y, HUANG S. Topological pseudomonotonicity and vector equilibrium problems [ J ]. Journal of Mathematical Analysis and Applications,2002,270:435-450.
  • 4ANSARI Q H, YAO J C. An existence result for generalized vector equilibrium problems [ J ]. Applied Mathematics Letters, 1999,12:53-56.
  • 5FU Jun-ying. Generalized vector quasi - equilibrium problems [ J ]. Mathematical Methods and Operational Research, 2000, 52:57-64.
  • 6BALENKII V Z,VOLKONSKII V A. Iterative methods in game theory and programming[ M ]. Moscow:Nauka, 1974 (in Russian).
  • 7KONNO I V, SACHAIBLE S. Duality for equilibrium problems under generalized monotonicity [ J ]. Journal of Optimization Theory and Applications ,2000,104:395-408.
  • 8ANSARI Q H, SIDDIQI A H. Existence and duality of generalized vector equilibrium problems [ J ]. Journal of Mathematical Analysis and Applications ,2001,256 : 115-126.
  • 9TANINO T. On supremum of a set in a muhi - dimensional space [ J ]. Journal of Mathematical Analysis and Applications, 1988,130:386-397.
  • 10TANINO T. Conjugate duality in vector optimization [ J ]. Journal of Mathematical Analysis and Applications, 1992,167:84- 97.

二级参考文献10

  • 1CLARKE F H, LEDYAEV Y S. Nonsmooth analysis and control theory[M]. NewYork: Springer- verlag,1998.
  • 2BORWEIN J M, ZHU Q J. Viscosity solutions and viscosity subderivatives in smooth Bananch spaces with applications to metric regularity [ J ]. SIAM J Cont and Opti, 1996, 34:1 568-1 591.
  • 3ROCKAFELLAR R T. Proximal subgradients marginal values and augmented Lagrangians in nonconvex optimization[J]. Math Oper Res, 1981,6:424-436.
  • 4LINDENSTRAUSS J, TZAFRIRI L. Classical Bananch spaces: Functionspaces [M]. Berlin: Springer - verlag,1979.
  • 5STUDNIARSKI M, JEYAKUMAR V. A generalized mean- value theorem and optimality conditions in composite nonsmooth minimization[J]. Nonlinear Anal TMA, 1995, 24: 83-894.
  • 6BORWEIN J M, PREISS D. A smooth variational principle with application to subdifferentiability [J].Tran Amer Math Soc, 1987, 303:517-527.
  • 7ZHU Q J. Clarke - Ledyaev mean - value inequalities in smooth Bananch spaces [J]. Nonlinear Anal TMA,1998, 32: 315-324.
  • 8CLARKE F H, LEDYAEV Y S. Mean - value inequalities in Hilbert space[J]. Tran Amer Math Soc, 1994,344: 307-324.
  • 9JEYAKUMAR V. Composite nonsmooth programming with Gateaux differentiability [J]. SIAM J Opti,1991, 1: 30-41.
  • 10JEYAKUMAR V, YANG X Q. Convex composite multi- objective nonsmooth programming[J]. Math Prog Series A, 1993, 59: 325-343.

共引文献5

同被引文献14

  • 1AUBIN J P, FRANKOWSKA H.Set-valued analysis [ M ]. Boston : Birkhauser, 1990.
  • 2ROCKAFELLAR R T,WETS R J B.Variational analysis[ MI .Berlin:Springer, 1998.
  • 3MORDUKHOVICH B S.Variational analysis and generalized differentiation, vol. I : Basic theory, vol. II : Applications [ M 1- Ber- lin : Springer, 2006.
  • 4GONG X H. Scalarization and optimality conditions for vector equilibrium problem [ J]. Nonlinear Analysis, 2010,73 (11 ): 3 598-3 612.
  • 5GONG X H.Optimality conditions for Henig and globally proper efficient solutions with ordering cone has empty interior[ J]. Journal of Mathematical Analysis and Applications, 2005,307( 1 ) :12-31.
  • 6SUN X K, CHENG Y.Duality for generalized vector equilibrium problem [ J ] .Journal of Yunnan University:Natural Sciences Edition, 2011,33 (3) : 249-252.
  • 7HESTENES M R.Calculus of variations and optimal control theory[ M] .New York :Wiley, 1966.
  • 8GINCHEV I, GUERRAGGIO A, ROCCA M.From scalar to vector optimization [ J ]. Economic & Quantitive Methods, 2003,51 (1) :5-36.
  • 9CHUONG T D.Optimality and duality for proper and isolated efficiencies in multiobjective optimization [ J ]. Nonlinear Analy- sis,2013,76(76) :93-104.
  • 10ZHU S K,PENG X Y,LIU Q S.Second-order optimality conditions for strict efficiency of vector optimization problems [ J]. Journal of Yunnan University: Natural Sciences Edition, 2011,33 (3) : 257-263.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部