期刊文献+

半线性抛物问题基于应力佳点的一类二次有限体积元方法 被引量:1

Quadratic finite volume element method based on optimal stress points for semilinear parabolic equations
下载PDF
导出
摘要 针对半线性抛物混合初边值问题,给出了一种基于应力佳点的二次有限体积元格式,并证明了格式的收敛性.具体算例表明该格式计算效果良好. A kind of quadratic finite volume element method based on optimal stress points is presented for semilinear parabolic equations with mixed initial boundary conditions.It is proved that the method is convergent.A numerical example illustrates the effectiveness of the scheme.
作者 王星 王同科
出处 《天津师范大学学报(自然科学版)》 CAS 北大核心 2011年第1期1-5,共5页 Journal of Tianjin Normal University:Natural Science Edition
关键词 半线性抛物方程 应力佳点 二次有限体积元格式 误差估计 semilinear parabolic equations optimal stress points quadratic finite volume element method error estimate
  • 相关文献

参考文献5

二级参考文献17

  • 1Wang,Tongke(王同科).HIGH ACCURACY FINITE VOLUME ELEMENT METHOD FOR TWO-POINT BOUNDARY VALUE PROBLEM OF SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS[J].Numerical Mathematics A Journal of Chinese Universities(English Series),2002,11(2):213-225. 被引量:4
  • 2孙红,王同科.对流扩散方程基于三次自然样条插值特征差分方法[J].天津师范大学学报(自然科学版),2005,25(1):36-39. 被引量:2
  • 3陈仲英.广义差分法一次元格式的L^2-估计[J].中山大学学报(自然科学版),1994,33(4):22-28. 被引量:9
  • 4Cai Zhiqiang,Steve McCormick. On the accuracy of the finite volume element method for diffusion equations on composite grid[J]. SIAM J. Numer. Anal, , 1990,27(3): 336-655.
  • 5Suli E. Convergence of finite volume schemes for Poissoffs equation on nonuniform meshes[J]. SIAM J. Numer. Anal. , 1991,28(5) : 1419-1430.
  • 6Jones W P, Menziest K R. Analysis of the cell-centred finite volume method for the diffusion equation[J]. Journal of Computational Physics, 2000,165:45-68.
  • 7Shu Shi, Yu H aiyuan, H uang Yunqing,Nie Cunyun. A symmetric finite volume element scheme on quadrilateral grids and superconvergence[J]. International Journal of Numerical Analysis and Modeling, 2006, 3(3) :348-360.
  • 8Li Ronghua,Chen Zhongying, Wu Wei. Generalized Difference Methods for Differential Equations Numerical Analysis of Finite Volume Methods[M]. Monographs and Textbooks in Pure and Applied Mathematics 226, Marcel Dekker Inc. ,2000.
  • 9Cai Zhiqiang, Jim Douglas J r, Moongyu Park. Development and analysis of higher order finite volume methods over rectangles for elliptic equations[J]. Advances in Computational Mathematics, 2003,19:3--33
  • 10Wang Tongke. High accuracy finite volume element method for two-point boundary value problem of second ordinary differential equation[J]. Numberical Mathematics,A Journal of Chinese Universities, 2002. 11(2) :197-212.

共引文献18

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部