期刊文献+

具时滞离散递归神经网络的全局指数稳定性 被引量:1

Globally Exponential Stability of Discrete-Time Recurrent Neural Networks with Time-Varying Delays
下载PDF
导出
摘要 研究了一类具时滞离散递归神经网络平衡点的全局指数稳定性问题.对连续有界激活函数做扇形非线性条件假定,用Lyapunov-Krasovskii稳定性理论和线性矩阵不等式方法,得到了具时滞离散递归神经网络模型在平衡点全局指数稳定的一些充分条件.数值例子说明了本文结果的有效性. The main purpose of this paper is to study the globally exponential stability of the equilibrium point for a class of discrete-time recurrent neural networks with time-varying delays.The Lyapunov-Krasovskii stability theory is applied and some new techniques are then developed.Combined with linear matrix inequality,some sufficient conditions for globally exponential stability of discrete-time recurrent neural networks with time-varying delays are obtained.A numerical example is finally given as an illustration.
作者 丁丹军
出处 《昆明理工大学学报(自然科学版)》 CAS 北大核心 2011年第1期67-71,78,共6页 Journal of Kunming University of Science and Technology(Natural Science)
基金 江苏省教育厅基金项目(项目编号:06KJD110206)
关键词 离散递归神经网络 时滞 全局指数稳定性 LYAPUNOV-KRASOVSKII函数 线性矩阵不等式 discrete-time recurrent neural network time-varying delay globally exponential stability Lyapunov-Krasovskii function linear matrix inequality
  • 相关文献

参考文献15

  • 1周冬明,曹进德,张立明.时滞神经网络全局渐近稳定性条件[J].应用数学和力学,2005,26(3):341-348. 被引量:13
  • 2LIU Zhigang,CHEN Anping,CAO Jinde,et al.Existence and global exponential stability of periodic solution for BAM neuralnetworks with periodic coefficients and time-varying delays. IEEE Trans Circ Syst I:Fundam Theory Appl . 2003
  • 3LIANG Jinling,CAO Jinde.Global asymptotic stability of bi-directional associative memory networks with distributed delays. Applied Mathematics and Computation . 2004
  • 4CHEN W.H.,LU X.,LIANG D.Y. Physics Letters . 2006
  • 5LIANG Jinling,CAO Jinde,Daniel W.Discrete-time bidirectional associative memory neural networks with variable delays. Physics Letters A . 2005
  • 6Cao J,Wang L.Exponential stability and periodic oscillatory solution in BAM networks with delays. IEEE Transactions on Neural Networks . 2002
  • 7E Kaslik,S Balint.Bifurcation analysis for a two-dimensional delayed discrete-time Hopfield neural network. Chaos Solitons Fractals . 2007
  • 8S. Mohamad,K. Golpalsamy.Dynamics of a class of discrete-time neural networks and their continuous-time counterparts. Mathematics and Computers in Simulation . 2000
  • 9J. Cao,,Q. Jiang.An analysis of periodic solution of bi-directional associative memorynetworks with time-varying delays. Physics Letters A . 2004
  • 10J. Liang,J. Cao.Exponential stability of continuous-time and discrete-time bidirec-tional associative memory networks with delays. Chaos Solitons Fractals . 2004

二级参考文献2

共引文献12

同被引文献9

  • 1HUANG Xia, CAO Jin-de, HUANG De-shuang. LMI-based approach for delay-dependent exponential stability analysis of BAM neural networks [ J ]. Chaos, Solitions and Fractals, 2005,24 (3) : 885-898.
  • 2ZENG Hong-bing, HE Yong. Complete delay-decompose approach to asymptotic stability for neural networks with time-varying delays [ J ]. IEEE Trans Neural Netw, 2011,22 (5) : $06-$12.
  • 3MENG Xiang-yu, James L, DU Bao-zhu, et al. A delay-partitioning approach to the stability analysis of discrete-time systems [ J ]. Automatica, 2010,46 ( 3 ) :610-614.
  • 4WU Zheng-guang, SU Hong-ye, CHU Jian, et al. Improved delay-dependent stability condition of discrete recurrent neural networks with yime-varying delays[ J ]. IEEE Trans Neural Netw ,2010,21 (4) :692-697.
  • 5Hetel L, Daafouz, Lung C. Equivalence between the Laypunov-Krasovskii functional approach for discrete delay systems [ J ]. Nonlinear Analysis : Hybird Systems, 2008,2 (5) :697-705.
  • 6CHEN Jie, SUN Jian, LIU G P, et al. New delay-dependent stability criteria for neural networks with time-varying interval delay [J]. Physics Letters A, 2010,374(43) :4397-4405.
  • 7HE Huang, GANG Feng. A scaling parameter approach to delay-dependent state estimation of delayed neural networks [ J ]. IEEE Trans Circuits and Systems II,2010,57( 1 ) :36-40.
  • 8SHAO Han-yong, HAN Qing-long. New delay-dependent stability criteria for neural networks with two additive time-varying delay components [ J ]. IEEE Trans Neural Netw, 2011,22 ( 5 ) : 812-818.
  • 9Gopalsamy K. Leakage delays in BAM [ J]. Journal of Mathematical Analysis and Applications ,2007,325 (2) :1117-1132.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部