期刊文献+

时变迭合AR模型的参数估计 被引量:4

Parameter Estimation of Time Varying Mixed AR Model
下载PDF
导出
摘要 首次提出了时变迭合AR模型,该模型在实际应用中具有广泛的应用价值.应用两步最小二乘法和限定记忆递推最小二乘法,给出了模型中时变参数的递推估计算法,该算法仅依靠量测数据即能自适应进行.仿真计算及应用结果表明:算法能够自适应地跟踪量测数据模型参数的变化,效果是令人满意的. In systematic identification, the measure noise can be assumed as AR model in general. As the measure noise in measured data can't be observed, the parameter estimation in AR model is difficult. Especially, the parameters in AR model are dynamical with time in actual. In this paper, the time varying mixed AR model is first presented and is used to solve the above problem. Applying two step LS method and restricted remember LS method, an adaptive algorithm is proposed to estimate the time varying parameters only depending on measured data. Simulation and actual results show that the algorithm can automatically track the time varying characteristics of data. Applying this algorithm, we can also provide the statistical property needed by Kalman filtering in time.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 1999年第5期733-735,738,共4页 Control Theory & Applications
基金 国家自然科学基金!(No .69872039)
关键词 系统辨识 时变迭合 AR模型 参数估计 parameter estimation time varying mixed AR model adaptive algorithm
  • 相关文献

参考文献3

二级参考文献7

  • 1徐晓,电子学报,1992年,20卷,1期,78页
  • 2安鸿志,时间序列的分析,1992年
  • 3沙钰,数理统计与应用概率,1991年,4期,32页
  • 4陈希孺,近代回归分析.原理方法及应用,1987年
  • 5Li Shiping,IEEE Trans AB,1986年,31卷,6期,275页
  • 6黄琳,系统与控制理论中的线性代数,1984年
  • 7Zi Anhong,Ann Statist,1982年,10卷,926页

共引文献16

同被引文献30

  • 1程国旗,蔡宗平,王跃钢.惯性制导系统误差补偿评估模型研究[J].电光与控制,2005,12(3):19-22. 被引量:3
  • 2王正明,易东云.含ARMA噪声系统模型的参数辨识方法[J].控制理论与应用,1996,13(4):471-476. 被引量:7
  • 3Vapnik V N. Statistical Learning Theory[M]. New York: J Wiley, 1998.
  • 4Box G E, Jenkins G M, Reinsel G C. Time Series Analysis: Forecasting and Control[M]. Prentice-Hall, Inc, 1994.
  • 5Akaike H. A new look at the statistical model identification[J]. IEEE Trans on Automatic Control, 1974,19:716- 723.
  • 6Rissanen J. Modeling by shortest data deseription[J].Automatiea, 1978, 14: 465-478.
  • 7Djuric P M. Asymptotic MAP criteria for model selection[J]. IEEE Trans on Signal Processing, 1998, 46(10): 2726-2735.
  • 8Kay S M, Nuttall A H, Baggenstoss P M. Multidimensional probability density function approximations for detection, classification, and model order selection[J]. IEEE Trans on Signal Processing, 2001,49 (10):2240- 2252.
  • 9DUAN Xiao-jun, DU Xiao-yong, WANG Zheng-ming. A residual-information-based criterion for model order selection[J]. Circuits, Systems, and Signal Processing, 2003,22(5) : 43-52.
  • 10DU Xiao-yong, HU Weidong. A criterion for the construction of regularization function in sparse component analysis[J]. 2005,24(4) :315-325.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部