期刊文献+

综合反向传播算法 被引量:1

A Synthetically Backpropagation Algorithm
下载PDF
导出
摘要 提出一种用于多层前向神经网络的综合反向传播算法.该算法使用了综合考虑绝对误差和相对误差的广义指标函数,采用了在网络输出空间搜索的反传技术,具有动态自调整学习率和动量因子,有神经元激活特性自调整、减少平台现象和消除学习过程中不平衡现象的能力.对比实验表明该算法有比基本BP算法快得多的收敛速度,并能取得全局最优解. This paper presents a synthetically backpropagation algorithm for multilayered forward neural networks.A new general index function that consider the effect of absolute error and relative error on NN learing and performance and the backpropagation technique based on searching output space are proposed and used in the algorithm.The algorithm has both a dynamical adaptive regulation learning rate and a variable momentum coefficient,and has ability of self regulation active characteristic,eliminating flat phenomenon and convergence no equilibrium phenomenon during training.The contrast experiments indicate that the algorithm has more fast convergence speed than BP algorithm and can achieve a global optimal solution.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 1999年第5期739-743,共5页 Control Theory & Applications
关键词 神经网络 学习算法 反向传播算法 neural network learning algorithm general index function
  • 相关文献

参考文献5

  • 1陆金桂.多层神经网络BP算法研究[J].计算机工程,1994,20(1):41-42.
  • 2王科俊.神经网络几个理论问题的研究及其在船舶横摇运动建模与预报中的应用:博士学位论文[M].哈尔滨:哈尔滨工程大学,1995..
  • 3王科俊,博士学位论文,1995年
  • 4陆金桂,计算机工程,1994年,20卷,1期,41页
  • 5陈开周,最优化计算方法,1985年

同被引文献12

  • 1陈华华,杜歆,顾伟康.基于遗传算法的静态环境全局路径规划[J].浙江大学学报(理学版),2005,32(1):49-53. 被引量:34
  • 2樊晓平,李双艳,陈特放.基于新人工势场函数的机器人动态避障规划[J].控制理论与应用,2005,22(5):703-707. 被引量:40
  • 3VAN DEN BERGH E ENGELBRECHT A E A study of particle swarm optimization particle trajectories[J]. Information Sciences, 2006, 176(8): 937 - 971.
  • 4KENNEDY J, EBERHART R C. Particle swarm optimization[C]// Proc of IEEE Int Conf on Neural Network. USA: IEEE Press, 1995: 1942- 1948.
  • 5JANG Ho Seo, CHANG Hwan Im, CHANG Geun Heo, et al. Mutimodal function optimization based on particle swarm optimization[J]. IEEE Trans on Magnetics, 2006, 42(4): 1095 - 1098.
  • 6YI Da, GE Xiuyun. An improved PSO-based ANN with simulated annealing technique[J]. Neuro Computing, 2005, 63(11): 527 - 533.
  • 7SHI Y, EBERJART R C. A modified swarm optimizer[C]//Proc of IEEE Int Conf on Evolutionary Computation. Piscataway: IEEE Press, 1998:69 - 73.
  • 8RATNAWEERA A, HALGAMUGE S K, WATSON H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J]. IEEE Trans on Evolutionary Computation, 2004, 8(3): 240 - 255.
  • 9SHI X H, LIANG Y C, LEE H P, et al. An improved GA and a novel PSO-GA-based hybrid algorithm[J]. Ira formation Processing Letters, 2005, 93(1): 255 - 261.
  • 10HIGASSHI N, IBA H. Particle swarm optimization with Gaussian mutation[C]//Proc of IEEE Swarm Intelligence Symp. Indianapolis: IEEE Inc, 2003:72 - 79.

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部