期刊文献+

随机性结构静力区间分析的遗传优化算法

Genetic Optimization Algorithms of Static Interval Analysis of Randomness Structure
下载PDF
导出
摘要 对结构随机性问题的区间有限元分析提出一种遗传优化算法,此方法以控制方程的最小二乘响应面为目标函数,将模拟生物的遗传和进化过程作为函数的优化过程进而获得方程的区间解。该方法具有全局收敛、不要求导数信息、无需编写复杂程序在常规有限元软件上易于实施等优点。算例分析表明该算法计算效率和准确性较高。 A genetic optimization algorithm is presented for interval finite element analysis method(FEM) of structure randomness problem.In this method,the Least Square Regression Response Surface(LSRRS) of control equations is taken as objective function and the process of biotic genetics and evolution is regarded as the process of function optimization,then interval solutions of equations are obtained.The algorithm has the advantages of global convergence and not needing derivative information,and is easy to implement on the conventional finite element software without writing complicated programs and so on.A numerical example shows that the method has a high calculating efficiency and accuracy.
作者 马加年
出处 《机械传动》 CSCD 北大核心 2011年第5期39-42,48,共5页 Journal of Mechanical Transmission
关键词 遗传算法 区间有限元法 最小二乘响应面 控制方程 Genetic algorithm Interval FEM Least square regression response surface Control equation
  • 相关文献

参考文献5

  • 1Mcwilliam S. Anti - optimization of uncertain structures using interval analysis[ J]. Computer and Structures, 2001,79 (4) : 421 - 430.
  • 2Chert Suhuan,Yang Xiaowei. Interval fmite dement method for beam structures [J]. Finite Elements in Analysis and Design,2000(34) : 75- 88.
  • 3郭书祥,吕震宙.线性区间有限元静力控制方程的组合解法[J].计算力学学报,2003,20(1):34-38. 被引量:21
  • 4朱增青,陈建军,李金平,刘国梁.不确定结构区间分析的仿射算法[J].机械强度,2009,31(3):419-424. 被引量:7
  • 5Wang Hu, Li Guangyao, Zhong Zhihua. Optimization of sheet metal forming processes by adaptive response surface based on intelligent sampling method[ J]. Materials Processing Technology,2008,197( 1 - 3) :77 - 88.

二级参考文献15

  • 1张建国,陈建军,马孝松.具有区间参数的不确定结构静力区间分析的一种算法[J].机械科学与技术,2005,24(10):1158-1162. 被引量:8
  • 2梁震涛,陈建军,王小兵.不确定性结构区间分析的改进Monte Carlo方法[J].系统仿真学报,2007,19(6):1220-1223. 被引量:4
  • 3Rao S S, Berke L. Analysis of uncertain structural systems using interval analysis[J]. American Institute of Aeronautics and Astronautics Journal (AIAA Journal) (S0001-1452), 1997, 35(4) : 725-735.
  • 4Mcwilliam S. Anti-optimization of uncertain structures using interval analysis[J]. Computers and Structures, 2001, 79(4) : 421-430.
  • 5Markov S. Iterative method for algebric solution to interval equations[J]. Applied Numerical Mathematics ( S0168-9274 ), 1999, 30 ( 2-3 ) : 225- 239.
  • 6Dessombz O, Thouverez F, Iaine J P, et al. Analysis of mechanical systems using interval computations applied to finite element methods [ J ]. Journal of Sound and Vibration, 2001, 239(5) : 949-968.
  • 7Qiu z P, Elishakoff I. Anti-optimization of structures with large tmcertain but non-random parameters via interval analysis[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 152(3): 361-372.
  • 8Huahao Shou, Hongwei Lin, Ralph Martin, Guojin Wang. Modified affine arithmetic is wore accurate than centered interval arithmetic or affine arithmetic[ J]. Mathematics of Surfaces, 2003, LNCS 2768 : 355-365.
  • 9Comba J L D, Stolfi J. Afi'ine arithmetic and its applications to computer graphics[C]//Proceedings of Anais do V II SIBGRAPI. Recife, Brazil: Anais do VII Sibgrapi,1993: 1-10.
  • 10Luiz H de Figueiredo, Jorge Stolfi. Self-validated numerical methods and applications[ M ]// Brazilian Mathematics Colloquium Monographs. Rio de Janeiro, Brazil: Institute of Pure and Applied Mathematics, 1997: 1- 116.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部