期刊文献+

基于无基底焦平面阵列红外热像仪的理论模型分析 被引量:4

Analysis of theoretical model of thermal infrared imager based on the substrate-free focal plane array
原文传递
导出
摘要 基于双材料微悬臂梁热变形原理的光学读出非制冷红外探测阵列经历了从有基底结构向无基底结构的发展过渡,无基底阵列的红外成像结果和有限元模型分析均表明无基底阵列不满足恒温基底条件.本文结合电学比拟的方法,提出了一种新的基于无基底焦平面阵列(focalplaneArray,FPA)的热传递分析的理论模型.分析采用整体考虑的思路,避开了无基底FPA阵列各单元热传递互相影响所产生的复杂热分布分析,并考虑了框架对热量的吸收与传递.理论模型采用外边框与环境等温的边界条件,虽不及有限元方法对边界条件的处理灵活,但也已取得与实验一致的计算结果,可以用作为计算无基底FPA响应的近似公式.同时,该理论模型避免了有限元建模计算的繁琐,在大阵列下计算尤为便捷,而且还能根据响应要求计算无基底FPA应具备的像素尺寸,实现FPA反向设计与优化. Based on thermal deformation of bi-material microcantilever,the focal plane array(FPA)of uncooled optical readout infrared(IR) imaging system has undergone a development from substrate array to substrate-free array.The experimental imaging result and finite element method(FEM) analysis indicated that the substrate-free focal plane array(FPA) did not accord with the condition of constant frame temperature.This paper proposed a new theoretical model on thermal transmission of substrate-free FPA with electrical analogy method.Considering the system as a whole,the analysis of complex thermal interaction of adjacent elements could be averted while the heat absorption and transmission of frame could be considered.The temperature of outer frame was set to be equal to the ambient temperature as a boundary condition.Although it was not so flexible compared with FEM analysis when dealing with the boundary condition,the theoretical model was proved to correspond with the experimental result,and could be used as an approximate formula in thermal response calculation of substrate-free FPA.The model avoids the complication of FEM analysis,especially for large arrays.Further more,the model can be used for substrate-free FPA dimensions design and optimization under certain response target.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2011年第5期415-424,共10页 Acta Physica Sinica
基金 国家自然科学基金(批准号:10872191 10872189 10732080)资助的课题~~
关键词 光学读出 无基底 非制冷红外成像 焦平面阵列 optical readout substrate-free uncooled infrared imaging focal plane array
  • 相关文献

参考文献20

  • 1Rogalski A 2003 Prog. Quant. Electron 27 59.
  • 2陈长虹,易新建,熊笔锋.基于VO_2薄膜非致冷红外探测器光电响应研究[J].物理学报,2001,50(3):450-452. 被引量:19
  • 3Mao M, Perazzo T, Kwon O, Majumdar A, Varesi J, Norton P 1999 Proc. IEEE MEMS 100.
  • 4Ishizuya T, Suzuki J, Akagawa K, Kazama T 2001 J. Institute of Image Information and Television Engineers 55 304.
  • 5Ishizuya T,Suzuki J, Akagawa K, Kazama T 2002 Proc. IEEE MEMS 578.
  • 6Zhao Y, Mao M, Horowitz R,Majumdar A,Varesi J,Norton P, Kitching J 2002 J. MEMS 11 136.
  • 7Senesaca L R, Corbeil J L, Rajic S, Kazama T 2003 Ultramicroscopy 97 451.
  • 8Dong F L, Zhang Q C, Chen D P, Pan L, Guo Z Y, Wang W B, Duan Z H, Wu X P 2006 Sensors and Actuators A 133 236.
  • 9Shi S L, Chen D P, Li C B, Jiao B B, Ou Y, Jing Y P, Ye T C, Guo Z Y, Zhang Q c, Wu x P 2007 Meas. Sci. Technol 18 1321.
  • 10Miao Z Y, Zhang Q C, Guo Z Y, Wu X P, Chen D P 2007 Opt. Lett. 32 594.

二级参考文献46

  • 1潘亮,张青川,伍小平,段志辉,陈大鹏,王玮冰,郭哲颖.基于MEMS的光力学红外成像[J].实验力学,2004,19(4):403-407. 被引量:22
  • 2郭哲颖,张青川,陈大鹏,伍小平,董凤良,缪正宇,熊志铭,李超波.光学读出室温物体红外成像[J].实验力学,2005,20(2):213-218. 被引量:10
  • 3缪正宇,张青川,陈大鹏,伍小平,李超波,郭哲颖,董凤良,熊志铭.双材料微梁阵列室温物体红外成像[J].物理学报,2006,55(7):3208-3214. 被引量:21
  • 4熊志铭,张青川,陈大鹏,伍小平,郭哲颖,董凤良,缪正宇,李超波.光学读出微梁阵列红外成像及性能分析[J].物理学报,2007,56(5):2529-2536. 被引量:13
  • 5Oden P I, Datskos P G, Thundat T, et al. Uncooled thermal imaging using a piezoresistive microcantilever[J]. Appl. Phys. Lett., 1996, 69(21):3277~3279
  • 6Manalis S R, Minne S C, Quate C F, et al. Two-dimensional micromechanical bimorph arrays for detection of thermal radiation [J]. Appl. Phys. Lett., 1997, 70(24): 3311~3313
  • 7Zhao Y, Mao M, Horowitz R, et al. Optomechanical uncooled infrared imaging system: Design, microfabrication, and performance[J]. J. of MEMS, 2002, 11(2):136~146
  • 8Zhao Y. Optomechanical uncooled infrared imaging system[M]. Dissertation of UC, Berkeley, 2002
  • 9Ishizuya T, Suzuki J, Akagawa K, et al. Optically readable bi-material infrared detector[J]. J. of Institute of Image Information & Television Engineers, 2001, 55(2):304~309
  • 10Ishizuya T, Suzuki J, Akagawa K, et al. 160 multiplied by 120 pixels optically readable bi-material infrared detector[J]. Proc. Of IEEE MEMS, 2002, 578~581

共引文献52

同被引文献37

  • 1潘亮,张青川,伍小平,段志辉,陈大鹏,王玮冰,郭哲颖.基于MEMS的光力学红外成像[J].实验力学,2004,19(4):403-407. 被引量:22
  • 2董凤良,张青川,伍小平,潘亮,郭哲颖,陈大鹏,王玮冰,段志辉.双材料微梁阵列非制冷红外成像系统——微梁阵列的设计与制作[J].红外与毫米波学报,2005,24(6):409-413. 被引量:8
  • 3缪正宇,张青川,陈大鹏,伍小平,李超波,郭哲颖,董凤良,熊志铭.双材料微梁阵列室温物体红外成像[J].物理学报,2006,55(7):3208-3214. 被引量:21
  • 4熊志铭,张青川,陈大鹏,伍小平,郭哲颖,董凤良,缪正宇,李超波.光学读出微梁阵列红外成像及性能分析[J].物理学报,2007,56(5):2529-2536. 被引量:13
  • 5Rogalski A. Infrared detectors: status and trends[M]. Prog. Quantum Electron. , 2003..27: 59-210.
  • 6ZHAO Y, MAO M, Horowitz R, et al. Optomeehanical uncooled infrared imaging system: design,microfabrica- tion, and performance[J]. MEMS, 2002,11(2):136-146.
  • 7MAO M, Perazzo T, Kwon O, et al. Direct-view uncooled micro-optomechanical infrared camera[C]. Proc. IEEE MEMS, 1999:100-105.
  • 8Ishizuya T, Suzuki J, Akagawa K, et al. Optically readable bi-material infrared detector[J]. J. Institute of Image Information b-Television Engineers, 2001, 55(2): 304-309.
  • 9Ishizuya T, Suzuki J, Akagawa K, et al. 160 multiplied by 120 pixels optically readable bi-material infrared detector[C]. Proc. IEEE MEMS, 2002: 578-581.
  • 10Senesaca L R, Corbeil J L, Rajic S, et al. IR imaging using uncooled microcantilever detectors[J]. Ultramicrosco- py, 2003, 97: 451.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部