期刊文献+

单空位缺陷对载能氢原子与石墨层间碰撞的能量交换的影响的分子动力学研究 被引量:1

Molecular dynamics simulation of energy exchange during hydrogen collision with graphite sheet containing a vacancy
原文传递
导出
摘要 本文采用分子动力学方法研究空位缺陷对石墨层中碳氢粒子碰撞的影响.将氢原子以不同能量分别向单空位缺陷边缘的两个碳原子轰击,分析了入射氢原子的能量损失、发生吸附反应的能量范围和靶原子的能量传递过程.研究发现,单空位缺陷边缘的碳氢粒子更易发生吸附反应;在碳氢粒子正碰过程中,氢原子随入射能量变化出现了双反射区域;碳氢粒子在空位缺陷边缘吸附后,形成了高结合能的sp2结构,并出现悬挂键,其临近的碳碳键能未降低;单空位缺陷边缘的碳原子吸附氢原子能量的能力强而传递能量的能力弱.这些结果对理解聚变反应中,碳基材料的化学腐蚀及氚滞留有重要意义. Molecular dynamics simulation is applied to investigation of energy exchanges during hydrogen collision with graphite sheet containing a vacancy.The effects of the monovancancy defect on the energy exchanges are discussed in detail.This paper analyzes the energy loss of the incident hydrogen atom,the energy range for the adsorption process,and the energy transfer process for target atom,in the course of a hydrogen atom bombarding the carbon atom at the edge of monovacancy defect in the graphite sheet.The simulation results show that the adsorption process proceeds more easily when the graphite sheet contains a vacancy than when the graphite sheet has perfect crystalline structure.In certain areas of the graphite sheet,adsorption of an incident hydrogen atom can occur in two energy ranges.The sp2 structure as well as overhang configuration occurs when a hydrogen atom is adsorbed.This adsorption process does not reduce the C—C bond energy.It is found that the carbon atom at the edge of monovacancy defect can adsorb an incident hydrogen atom more easily but can not diffuse the gained energy as efficiently as in a perfect graphite sheet.These results are helpful for understanding the chemical erosion of carbon based materials and the ensuing tritium retention in fusion devices.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2011年第5期733-738,共6页 Acta Physica Sinica
基金 国家重点基础研究发展计划(批准号:2008CB717801 2010CB832901) 中央高校基本科研业务费专项(批准号:DUT10ZD111)资助的课题~~
关键词 面向等离子体材料 分子动力学方法 单空位缺陷 plasma facing materials molecular dynamics simulation monovacancy
  • 相关文献

参考文献21

  • 1Janeschitz G, Borrass K, Federici G, Igitkhanov Y, Kukushkin M, Pacher H D, Pacher G W, Sugihara M 1995 J. Nucl. Mater. 220 73.
  • 2Parker R, Janeschitz G, Pacher H D, Post D, Chiocchio S, Federici G, Ladd P, ITER Joint Central Team, Home Teams 1997 J. Nucl. Mater. 241 1.
  • 3Tivey R, Ando T, Antipenkov A, Barabash V, Chiocehio S, Federici G, Ibbott C, Jakeman R, Janeschitz G, Raffray R, Akiba M, Mazul I, Pacher H, Ulrickson M, Vieider G 1999 Fusion Eng. Des. 46 207.
  • 4李齐良 郑永真 程发银 邓小波 邓冬生 游佩林 刘贵昂 陈向东.物理学报,2001,50:507-507.
  • 5Zakharov A P, Gorodetsky A E, Alimov V K, Kanashenko S L, Markin A V 1997 J. Nucl. Mater. 241 52.
  • 6Atsum H 2003 J. Nucl. Mater. 313 543.
  • 7Causey R A 2002 J. Nucl. Mater. 300 91.
  • 8Mech B V, Haasz A A, Davis J W 1998 J. Nucl. Mater. 255 153.
  • 9王震遐,俞国庆,阮美龄,朱福英,朱德彰,潘浩昌,徐洪杰.Ar^+离子束轰击在石墨表面形成六方金刚石纳米晶的研究[J].物理学报,2000,49(8):1524-1527. 被引量:4
  • 10严六明,严琪良,刘洪来,戎宗明,胡英.Ar-Kr溶液扩散系数的分子动力学模拟及其与温度的关系[J].高等学校化学学报,1997,18(12):2026-2029. 被引量:8

二级参考文献12

共引文献17

同被引文献18

  • 1李瑞,胡元中,王慧,张宇军.单壁碳纳米管在石墨基底上运动的分子动力学模拟[J].物理学报,2006,55(10):5455-5459. 被引量:9
  • 2Janeschitz G, Borrass K, Federici G, Igitkhanov Y, Kukushkin M, Pacher H D, Pacher G W, Sugihara M 1995 J. Nucl. Mater. 220 73.
  • 3Moler W, Eckstein W, Biersack J P 1988 Comput. Phys. Commun. 51 355.
  • 4Biersack J P, Haggmark L G 1980 Nucl. Instr. and Meth 174 257.
  • 5Jacob J, Hopf C 2005 J. Nucl. Mater. 342 141.
  • 6Schneider R, Rai A, Mutzke A, Warder M, Salonen E, Nordlund K 2007 J. Nucl. Mater. 367 1238.
  • 7Salonen S, Nordlund K, Keinonen J, Wu C H 2001 Phys. Rev. B 63 195415.
  • 8Sun J Z, Li S Y, Stirner T, Chen J L, Wang D Z 2010 J. Appl. Phys. 107 113533.
  • 9Mech B V, Haasz A A, Davis J W 1998 J. Nucl. Mater. 255 153.
  • 10Ito A, Nakamura H 2008 Commun. Comput. Phys. 4 592.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部