期刊文献+

利用不同阴极缓冲层来改善Pentacene/C_(60)太阳能电池的性能 被引量:1

Inserting various cathodic buffer layers to enhance the performance of Pentacene/C_(60) based organic solar cells
原文传递
导出
摘要 制备了结构为ITO/Pentacene/C60/Al的双层光伏电池器件,在C60/Al界面插入了常用的缓冲层材料bathocuproine(BCP)作为阴极缓冲层,通过优化BCP层的厚度来提高电池的性能并研究了阴极缓冲层的作用机理.实验发现,BCP厚度为10nm时器件的效率最高,为0.46.在此基础上,利用bathophenanthroline(Bphen)和3,4,9,10-Perylenetetracarb-oxylicdianhydride(PTCDA)材料取代BCP,分别研究了缓冲层材料电子迁移率以及光吸收特性对器件性能的影响.在使用电子迁移率比BCP高两个数量级的Bphen材料作为缓冲层后,电池效率提高到了0.56.而当使用在可见光区有较强光吸收的PTCDA材料作为缓冲层时,可以起到增加电池光吸收的作用,电池短路电流提高至5.97mA/cm2,效率达0.87. Devices with the structure of ITO /Pentacene /C60 /Al were prepared.Then,in order to enhance the performance of these cells and study the mechanism of the cathodic buffer layer,bathocuproine(BCP) of different thickness were inserted between C60 and Al.When inserting 10 nm BCP,the power conversion effciency of the cell is as high as 0.46.On this basis,bathophenanthroline(Bphen) and 3,4,9,10-Perylenetetracarb-oxylicdianhydride(PTCDA) are used instead of BCP,so as to compare and discuss the effects on the performance of the solar cells caused by the electron mobility and optical absorption properties of the cathodic buffer layers.As the electron mobility of Bphen is two orders of magnitude higher than that of BCP,the efficiency of devices with Bphen as the buffer layer was improved to 0.56.Furthermore,the absorption spectrum of devices was obviously enhanced by inserting PTCDA material which has large absorption in visible light region,and the highest current density of such device was enhanced to 5.97 mA /cm2 and the efficiency was 0.87.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2011年第5期796-801,共6页 Acta Physica Sinica
基金 国家自然科学基金(批准号:60978060,10974013,10804006) 教育部博士点基金(批准号:20090009110027) 北京市自然科学基金(批准号:1102028) 北京市科委(批准号:Z090803044009001) 科技部国际合作计划(批准号:2008DFA61420) 北京交通大学“红果园双百计划”资助的课题~~
关键词 有机太阳能电池 PENTACENE C60 缓冲层 organic solar cells Pentacene C60 buffer layer
  • 相关文献

参考文献1

二级参考文献1

共引文献5

同被引文献27

  • 1陈跃宁,徐证,张馨芳,汪鹏.聚合物掺杂富勒烯衍生物光伏特性的研究[J].光电子.激光,2009,20(9):1163-1165. 被引量:4
  • 2Forrest S R. The path to ubiquitous and low-cost organic electronic appliances on plastic [J]. Nature, 2004, 428 (02498) :911-918.
  • 3Xue J,Rand B P,Uchida S,et al. A hybrid planar-mixed molecular heterojunction photovoltaic cell[J]. Adv. Mater,2005,17(1) :66-71.
  • 4Kim J Y,Lee K,Coates N E, et al. Efficient tandem polymer solar cells fabricated by all-solution processing[J]. Science, 2007,317(5835): 222-225.
  • 5Sista S, Park M H, Hong Z R, et al. Highly efficient tandem polymer photovoltaic cells[J]. Adv. Mater, 2010,2,2 (3) : 380-383.
  • 6Yu G, Gao J, Heeger A J, et al. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions [ J]. Science, 1995, 270 (5243) :1789-1791.
  • 7Yakimov A, Forrest S R. High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters [J]. Appl. Phys. Lett., 2002, 80 (17): 1667-1669.
  • 8Drechsel J, Manning B, Hoppe H, et al. Efficient organic solar cells based on a double p-i-n architecture using doped wide-gap transport layers[J]. AppI. Phys. Lett., 2005,86(24) :244102 : 1-24410:3.
  • 9Ohan M Y,Lai S L,Fung M K,et al. Doping-induced efficiency enhancement in organic photovoltaic devices[J]. Appl. Phys. Left. ,2007,90(2) :023504-]-3.
  • 10Wang D D,Wu Z X,Zhang X W,et al. Solution-processed white organic light-emitting devices based on small-molecule materials [ J]. Journal of Luminescence, 2010, 130 (2) :321-325.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部