期刊文献+

径向基网络在简支梁损伤识别中的应用 被引量:2

Application of RBF Networks to Damage Identification in Simply Supported Beam
原文传递
导出
摘要 对简支梁进行了损伤分析,研究了不同损伤工况下的频率变化率和模态振型曲率变化,并采用径向基神经网络对结构进行了损伤识别研究,研究中采用了三种方案:仅利用频率变化率;仅用第1阶模态曲率变化;综合使用前3阶频率变化率和模态曲率变化。结果表明,基于动力参数和径向基神经网络的结构损伤识别方法能够准确地识别结构的损伤程度;神经网络的输入参数选择对结果有较大影响,综合使用频率变化率和模态曲率变化的第3种方案识别效果最好。 Damage analysis of simply supported beam is presented in this paper,involving rate of frequency change and change of mode shape curvature at different kinds of scenarios.RBF neural networks are adopted to identify the structural damage.Three schemes,which choose different parameters as input of networks,are used in the damage identification process:(1) only rate of frequency change;(2) only the first order mode shape curvature change;(3) the combination of the first three orders of rate of frequency change and change of mode shape curvature.Results show that the structural damage can be identified by using RBF networks and vibration characters,and the input parameters of networks do the bigger inf-luence on the identification effect.The combination scheme(3) makes the best results in this paper.
出处 《公路》 北大核心 2011年第5期56-61,共6页 Highway
关键词 损伤识别 频率 模态曲率 径向基网络 damage identification frequency mode curvature RBF network
  • 相关文献

参考文献10

  • 1Doebling SW, Farrar CR, Prime MB. Damage Identification and Health Monitoring of Structural and Mechanical Systems From Changes in Their Vibration Characteristies: A Literature Review[R]. Los Alamos National Laboratory, 1996.
  • 2S'ohn H, CR Farrar, Hemez FM, et al. A review of strueturai health monitoring literature[R]. Los Alamos National Laboratory, 2004.
  • 3Wu X, Ghaboussi J,Garrett J H. Use of neural networks in detection of structural damage[J]. Computers & Structures, 1992, 42 (4): 649-659.
  • 4Elkordy M F, Chang K C, Lee G C. Application of neural networks in vibrational signature analysis [J]. Journal of Engineering Mechanics; 1994.120 (2): 251-264.
  • 5Pandey PC, Barai, SV. Multilayer perceptron in damage detection of bridge structures [J]. Computers Structures, 1995, 54 (4): 597--608.
  • 6Choi M Y, Kwon I B. Damage detection system of a real steel truss bridge by neural networks [C]//Smart structures and Materials 2000: Smart Systems to Bridges Structures and Highways, 2000.
  • 7李忠献,杨晓明,丁阳.应用人工神经网络技术的大型斜拉桥子结构损伤识别研究[J].地震工程与工程振动,2003,23(3):92-99. 被引量:23
  • 8杨杰,李爱群,缪长青.BP神经网络在大跨斜拉桥的斜拉索损伤识别中的应用[J].土木工程学报,2006,39(5):72-77. 被引量:32
  • 9胡良红,刘效尧.基于改进的BP神经网络的钢桁梁桥损伤识别[J].合肥工业大学学报(自然科学版),2006,29(5):576-579. 被引量:4
  • 10Broomhead DS, Lowe D. Muhivariable functional interpolation and adaptive networks [J]. Complex Systems, 1988,(2): 321-355.

二级参考文献23

  • 1陈建林,郭杏林.基于神经网络的简支梁损伤检测研究[J].烟台大学学报(自然科学与工程版),2001,14(3):217-223. 被引量:19
  • 2王柏生.结构损伤监测与识别[M].技术:浙江大学出版社,2000.10.
  • 3Chung-Bang Yun, Eun Young Bahng. Substructural identification using neural networks[ J]. Computers & Structures, 2000, 77:41-52.
  • 4Msasfumi HOSOKAWA and Takashi HOSHI. Landform classification method using serf-organizing map and its application to earthquake damage evaluation[J]. IEEE, 2001,4:1684-1686.
  • 5Poyu Tsou and M. -H. Herman Shent. Structural damage detection and identification using neural networks[J]. AIAA Journal, 1994, 32( 1 ) :176-183.
  • 6飞思科技产品研发中心.MatLab6.5辅助神经网络分析与设计[M].电子工业出版社,2004..
  • 7Marwala T.Damage identification using committee of national networks[J].ASCE Journal of Engineering Mechanics,2000,126(7):666-676.
  • 8Hassiotis S.Identification of damage using natural frequencies and Markov parameters[J].Computers and Structures,2000,74(2):365-373.
  • 9Hagan M T,Howard B D,Mark B.Neural network design[M].USA,PWS Publishing Company,1996
  • 10Venkatasubramanian V,Chan K.A neural network methodology for process fault diagnosis[J].AIChE Journal,1989,35(12):1993-2002

共引文献50

同被引文献24

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部