摘要
提出一种基于在线模型匹配与更新的人脸三维表情运动跟踪算法.利用自适应的统计观测模型建立在线模型,自适应的状态转移模型结合改进的粒子滤波同时进行确定性搜索和随机化搜索,并且融合目标的多种测量信息减少光照和个体相关性的影响.利用所提出的算法既可以得到全局刚体运动参数,又可以得到局部柔性表情参数.实验证明了该算法的有效性.
A 3 D facial expressional motion tracking algorithm proposed. It constructs the online model using an based on online model adaptation and updating is adaptive statistic observation model. With the combination of adaptive state transition model and improved particle filter, statistic search and determinate search are proposed simultaneously. Multi-measurements are infused to decrease lighting influence and person dependence. With the proposed algorithm, the global rigid motion parameters and local non rigid expressional parameters are obtained. Experiment result confirms the effectiveness of the proposed algorithm.
出处
《模式识别与人工智能》
EI
CSCD
北大核心
2011年第2期168-175,共8页
Pattern Recognition and Artificial Intelligence
关键词
人脸表情运动跟踪
在线外观模型
粒子滤波
信息融合
Facial Expressional Motion Tracking, Online Appearance Model, Particle Filter,Information Fusion