期刊文献+

基于优良模式连接的分布估计算法求解TSP问题 被引量:5

Solving TSP Problems with Estimation of Distribution Algorithm Based on Superiority Pattern Junction
原文传递
导出
摘要 提出一种基于优良模式连接的分布估计算法求解TSP问题.首先构造两两相邻的模式矩阵,然后结合优良个体信息建立多个相邻模式的连接块.以块为整体调整排列顺序,避免重复搜索,改善优良模式构造块的破坏问题,提高搜索速度.同时对每个块内部的模式有条件地进行局部调整,进一步加强算法的局部搜索能力.仿真结果表明,本文算法在求解TSP问题时表现出较好的性能. An estimation of distribution algorithm for TSP problems based on superiority pattern junction is proposed. The pairwise adjacent pattern matrix is constructed, then the junction blocks are built combining with superiority individual information. Each block is adjusted as a whole to avoid repeating search. Therefore, the disruption of superiority building blocks is solved and the search speed is improved. Meanwhile, the patterns within each block is made local adjustment under special conditions to enhance the local search ability. The simulation results show that the proposed algorithm has better efficiency in solving the TSP problems.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2011年第2期185-193,共9页 Pattern Recognition and Artificial Intelligence
关键词 分布估计算法 优良模式连接 模式矩阵 TSP问题 Estimation of Distribution Algorithm, Problem Superiority Pattern Junction, Pattern Matrix, TSP
  • 相关文献

参考文献18

  • 1Pelikan M, Goldberg D E, Lobo F G. A Survey of Optimization by Building and Using Probabilistic Models. Computational Optimization and Applications, 2002, 21 ( 1 ) : 5 -20.
  • 2Harik G R, Lobo F G, Goldberg D E. The Compact Genetic Algorithm. IEEE Trans on Evolutionary Computation, 1999, 3(4) : 287 -297.
  • 3Baluja S. Population-Based Incremental Learning: A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning. Technical Report, CMU-CS-94-163, Pittsburgh, USA: Carnegie Mellon University. Department of Computer Science, 1994.
  • 4de Bonnet J S, Isbell C L, Viola P. MIMIC : Finding Optima by Estimating Probability Densities//Jordan M I, Kearns M J, Solla S A, eds. Advances in Neural Information Processing Systems, Cambridge, USA, MIT Press, 1997, IX: 424-430.
  • 5周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:209
  • 6Paul T K, Iba H. Linear and Combinatorial Optimizations by Estimation of Distribution Algorithms//Proc of the 9th MPS Symposium on Evolutionary Computation. Nagova Japan. 2002 : 1 - 8.
  • 7Leung K S, Jin Huidong, Xu Zongben. A Expanding Self-Organizing Neural Network for the Travel Salesman Problem. Neuron Com- puting, 2004, 62 : 267 - 292.
  • 8DePuy G W, Whitehouse G E. Meta-RaPS: A Simple and Effective Approach for Solving the Traveling Salesman Problem. Transportation Research Part E: Logistics and Transportation Review, 2005, 41(2) : 115 -130.
  • 9Tsai C F, Tsai C W, Tseng C. A New Hybrid Heuristic Approach for Solving Large Traveling Salesman Problem. Information Sciences, 2004, 166(1) : 67 -81.
  • 10Mtthlenbein H, Paass G. From Recombination of Genes to the Esti- mation of Distributions I. Binary Parameters//Proc of the 4th International Conference on Parallel Problem Solving from Nature. Berlin, Germany, 1996 : 178 - 187.

二级参考文献90

  • 1Shapiro J L. Drift and scaling in estimation of distribution algorithms. Evolutionary Computation, 2005, 13(1):99-123
  • 2Zhang Q, Miihlenbein H. On the convergence of a class of estimation of distribution algorithms. IEEE Transactions on Evolutionary Computation, 2004, 8(2): 127-136
  • 3Zhang Q. On the convergence of a factorized distribution algorithm with truncation selection[Online], available: http://cswww.essex.ac.uk/staff/zhang/EDAWEB/,May 10, 2006
  • 4Zhang Q. On stability of fixed points of limit models of univariate marginal distribution algorithm and factorized distribution algorithm. IEEE Transactions on Evolutionary Computation, 2004, 8(1): 80-93
  • 5Rastegax R, Meybodi M Ft. A study on the global convergence time complexity of estimation of distribution algorithms. Lecture Notes in Computer Science, 2005, 3641:441-450
  • 6Gao Y, Culberson J. Space complexity of estimation of distribution algorithms. Evolutionary Computation, 2005,13(1): 125-143
  • 7Pelikan M, Sastry K, Goldberg D E. Scalability of the Bayesian optimization algorithm. International Journal of Approximate Reasoning, 2002, 31(3): 221-258
  • 8Muhlenbein H, HSns R. The estimation of distributions and the minimum relative entropy principle. Evolutionary Computation, 2005, 13(1): 1-27
  • 9Roberto S. Estimation of distribution algorithms with Kikuchi approximations. Evolutionary Computation, 2005,13(1): 67-97
  • 10Jiri O. Entropy-based convergence measurement in discrete estimation of distribution algorithms. In: Lozano et al. (Eds): Towards a New Evolutionary Computation:Advances in the Estimation of Distribution Algorithms.Springs-Verlag, 2002. 125-142

共引文献208

同被引文献53

  • 1Shi Zhi fu Zhang An Wang Anli.Target distribution in cooperative combat based on Bayesian optimization algorithm[J].Journal of Systems Engineering and Electronics,2006,17(2):339-342. 被引量:6
  • 2周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:209
  • 3潘全科,王文宏,朱剑英.解决无等待流水车间调度问题的离散粒子群优化算法[J].计算机集成制造系统,2007,13(6):1127-1130. 被引量:18
  • 4黄翰,郝志峰,吴春国,秦勇.蚁群算法的收敛速度分析[J].计算机学报,2007,30(8):1344-1353. 被引量:72
  • 5蔡自兴.人工智能及其应用:研究生用书(第三版)[M].北京:清华大学出版社,2005.
  • 6Jiahai Wang, A novel discrete particle swarm optimiza- tion based on estimation of distribution[C]//Proceed- ings of the 3rd International Conference on Intelligent Computing, Qingdao: ICIC, 2007: 791-802.
  • 7Pelikan M, Goldberg D E. Linkage problem,distribu- tion estimation and Bayesian networks [J]. IEEE Trans on Evolutionary Computation, 2000, 8 (3) : 311-340.
  • 8Pelikan M, Sastry K, Goldberg D E. Scalability of the tayesian optimization algorithms[J]. Internation- al Journal of Approximate Reasoning, 2002, 31(3): 221-258.
  • 9Masaharu M, Naoya M, Kiyoshi A. Introducing as- signment functions to Bayesian optimization algo- rithms[J]. Information Sciences, 2008, 178(1) : 152- 163.
  • 10Cheng Jie, Greiner R, Kelly J, et al. Learning Bayesian networks from data; an information-theory based approach[J]. Artificial Intelligence, 2002, 137(1/2) : 43-90.

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部