期刊文献+

基于本体概念群组划分的语义距离计算方法 被引量:7

An Ontology Concept-Based Cluster Partition Approach for Computing the Semantic Distance between Concepts
原文传递
导出
摘要 概念的语义相似度计算是自然语言处理等领域的重要研究内容,基于语义距离的概念相似度计算是其主要方法.在分析现有算法存在弊端的基础上,提出基于领域本体群组划分的概念语义距离计算方法.首先给出多概念群组下概念语义距离的计算规则,然后分别提出群组内和群组间的概念语义距离计算方法,通过引入正向和反向的语义距离来解决上下位关系概念对的语义相似度非对称性,并通过概念节点的位置动态分配关系的权值来处理其他非上下位的二元关系.实验表明,基于领域本体群组划分的概念语义距离计算方法是有效的,与其他典型的同类方法相比,具有明显的优势. The semantic similarity computing between concepts is an important component in natural language processing etc. , and the semantic similarity computing between concepts based on semantic distance is currently dominant technique. In this paper, the ontology based cluster partition approach for computing the semantic distance between concepts is proposed on the basis of the analysis of the lacks in the existing algorithms. The rules for computing the semantic distance between concepts are given under the situation of multi-concept clusters, and then the approach for computing the semantic distance between concepts within single cluster as well as cross-cluster is put forward. In the proposed approach, the non-symmetry of semantic similarities in the pairs of hyponymy concepts is worked out by introducing the forward semantic distance and the reverse semantic distance, and the other binary relationships of the pairs of non-hyponymy concepts are deal with by dynamically allocating the relation weights in the light of the locations ofconcept nodes. Experimented results shows that the proposed approach is effective and it is preferable to other typical similar ones.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2011年第2期194-200,共7页 Pattern Recognition and Artificial Intelligence
基金 广东省自然科学基金项目(No.10252500002000001) 广东省教育部产学研结合项目(No.2010B090400235)资助
关键词 本体 群组划分 语义相似度 语义距离 非对称性 二元关系 Ontology, Cluster Partition, Semantic Similarity, Semantic Distance, Non-Symmetry,Binary Relationship
  • 相关文献

参考文献11

  • 1Bemers-Lee T, Hendler J, Lassila O. The Semantic Web. Scientific American, 2001, 284(5): 34-43.
  • 2Francisco M C, Mario J S, Pedro M C. Measuring Semantic Similarity between Gene Ontology Terms. Data & Knowledge Engineering, 2007, 61(1) : 137 -152.
  • 3Gao Shu, Rana O F, Avis N J, et al. Ontology-Based Semantic Matchmaking Approach. Advances in Engineering Software, 2007, 38(1) : 59 -67.
  • 4Budanitsky A, Hirst G. Evaluating WordNet-Based Measures of Lexical Semantic Relatedness. Computational Linguistics, 2004, 32 (1): 13-47.
  • 5Niles I, Pease A. Towards a Standard Upper Ontology// Proc of the International Conference on Formal Ontology in Information Systems. Ogunquit, USA, 2001:2-9.
  • 6刘群 李素建.基于《知网》的词汇语义相似度计算.中文计算语言学,2002,7(2):59-76.
  • 7Bernstein A, Kiefer C. RDQL-Imprecise Queries Using Similarity Joins for Retrieval in Ontologies//Proc of the 4th International Semantic Web Conference. Galway, Ireland, 2005.
  • 8Kiefer C, Bemstein A, Lee H J, et al. Semantic Process Retrieval with ISPARQL//Proc of the 4th European Conference on the Semantic Web : Research and Applications. Innsbruck, Austria, 2007 : 609 - 623.
  • 9彭晖,史忠植,常亮,等.基于非对称语义相似度的语义Web服务匹配//中国人工智能大会论文集.北京:北京邮电大学出版社,2007:133-138.
  • 10Al-Mubaid H, Nguyen H A. A Cluster-Based Approach for Semantic Similarity in the Biomedical Domain// Proc of the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. New York, USA, 2006:2713 -2717.

二级参考文献7

  • 1http://www.keenage.com.2005.2.
  • 2Yannis Kalfoglou, Marco Sehorlemmer. Ontology mapping: the state of the art[J].The Knowledge Engineering Review, 2003, 18(1):1-31.
  • 3Jayant Madhavan, Philip A. Bernstein, Pedro Domingos, Alon Y. Halevy. Representing and reasoning about mappings between domain models[C]. Eighteenth National Conference on Artificial Intelligence, Edmonton, Alberta, Canada, 2002:80-86.
  • 4Jayant Madhavan, Philip A. Barnstein, Erhard Rahm, Generic schema matching with eupid[C]. In:Proceedings of the 27th International Conference on Very Large Data Bases, Sept. 2001,11-14:49-58.
  • 5Melnik S, Garcia-Molina H, Rahm E. Similarity flooding:a versatile graph matching algorithm and its application to schema matching[C]. In:Proc. 18th ICDE, San Jose CA, Feb 2002.
  • 6Doan A, Madhavan J, Domingos P, Halevy A. Ontology matching:a machine learning approach[A]. In:S. Stash and R. Studer (eds.), Handbook on Ontologies in Information Systems [M]. Springer-Velag ,2003:397-416.
  • 7Paolo Bouquet, Luciano Serafini, Stefano Zanobini. Semantic coordination, a new approach and an application[C]. International Semantic Web Conference, 2003:130-145.

共引文献170

同被引文献63

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部