期刊文献+

基于拟蒙特卡罗方法的进化算法搜索鲁棒最优解的性能提高研究 被引量:10

Research on Increasing the Performance of Evolutionary Algorithm in Searching Robust Optimal Solutions Based on Quasi-Monte Carlo Method
原文传递
导出
摘要 鲁棒最优解在工程应用中具有十分重要的意义,它是进化计算的重要研究内容,也是研究难点.进化算法搜索鲁棒最优解时,通常使用蒙特卡罗积分(MCI)近似估计有效目标函数(EOF),但由于现有的原始蒙特卡罗方法(C-MC)近似精度不高,导致进化算法搜索鲁棒最优解的性能较差.文中提出用拟蒙特卡罗方法(Q-MC)估计有效目标函数.通过大量的数值实验,结果表明,与C-MC相比,文中所引入的Q-MC方法——SQRT序列、SOBOL序列和Korobov点阵能更精确估计EOF,进而较大提高进化算法搜索鲁棒最优解的性能. Robust optimal solution is of great significance in engineering application. It is one of the most important and difficult topics in evolutionary computation. Monte Carlo Integral (MCI) is generally used to approximate effective objective function (EOF) in searching robust optimal solution with evolutionary algorithm (EA). However, due to the low accuracy in existing crude Monte Carlo (C-MC) method, the performance of searching robust optimal solution with EA is unsatisfactory. Therefore, a Quasi-Monte Carlo (Q-MC) method is proposed to estimate EOF. The experimental results demonstrate that the proposed Q-MC methods -SQRT sequence, SOBOL sequence and Korobov Lattice approximate EOF more precisely compared with C-MC method, and consequently, the performance of searching robust optimal solution with EA is improved.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2011年第2期201-209,共9页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.60773047) 湖南省自然科学基金项目(No.09JJ6089) 湖南省教育厅项目(No.10C126)资助
关键词 进化算法 鲁棒最优解 拟蒙特卡罗方法 有效目标函数 Evolutionary Algorithm, Robust Optimal Solution, Quasi-Monte Carlo Method, EffectiveObjective Function
  • 相关文献

参考文献30

  • 1Holland J H. Adaptation in Natural and Artificial Systems. Ann Arbor, USA: University of Michigan Press, 1975.
  • 2Jensen M T. Generating Robust and Flexible Job Shop Schedules Using Genetic Algorithms. IEEE Trans on Evolutionary Computation, 2003, 7 (3) : 275 - 288.
  • 3Thompson A. Evolutionary Techniques for Fault Tolerance// Proc of the UKACC International Conference on Control. Exeter, UK, 1996, 693 - 698.
  • 4Anthony D K, Keane A J. Robust-Optimal Design of a Lightweight Space Structure Using a Genetic Algorithm. AIAA Journal, 2003, 41(8) : 1601 -1604.
  • 5Jin Y, Branke J. Evolutionary Optimization in Uncertain Environments - A Survey. IEEE Trans on Evolutionary Computation, 2005, 9(3) : 303 -317.
  • 6Yang S, Ong Y S, Jin Y, eds. Evolutionary Computation in Dynamic and Uncertain Environments. Berlin: Springer, 2007.
  • 7Branke J, Schmidh C. Faster Convergence by Means of Fitness Estimation. Soft Computing, 2005, 9(1 ) : 13 -20.
  • 8Tsutsui S, Ghosh A. Genetic Algorithm with a Robust Solution Searching Scheme. IEEE Trans on Evolutionary Computation, 1997, 1(3) : 201 -208.
  • 9Jin Y, Sendhoff B. Trade-Off between Performance and Robustness : An Evolutionary Multiobjective Approach//Proc of the 2nd International Conference on Evolutionary Multi-Criterion Optimaization. Faro, Portugal, 2003 : 237 -251.
  • 10] Lim D, Ong Y S, Jin Y, et al. Inverse Multi-Objective Robust Evolutionary Design. Genetic Programming and Evolvable Machines, 2006, 7(4) : 383 -404.

同被引文献111

引证文献10

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部