摘要
鲁棒最优解在工程应用中具有十分重要的意义,它是进化计算的重要研究内容,也是研究难点.进化算法搜索鲁棒最优解时,通常使用蒙特卡罗积分(MCI)近似估计有效目标函数(EOF),但由于现有的原始蒙特卡罗方法(C-MC)近似精度不高,导致进化算法搜索鲁棒最优解的性能较差.文中提出用拟蒙特卡罗方法(Q-MC)估计有效目标函数.通过大量的数值实验,结果表明,与C-MC相比,文中所引入的Q-MC方法——SQRT序列、SOBOL序列和Korobov点阵能更精确估计EOF,进而较大提高进化算法搜索鲁棒最优解的性能.
Robust optimal solution is of great significance in engineering application. It is one of the most important and difficult topics in evolutionary computation. Monte Carlo Integral (MCI) is generally used to approximate effective objective function (EOF) in searching robust optimal solution with evolutionary algorithm (EA). However, due to the low accuracy in existing crude Monte Carlo (C-MC) method, the performance of searching robust optimal solution with EA is unsatisfactory. Therefore, a Quasi-Monte Carlo (Q-MC) method is proposed to estimate EOF. The experimental results demonstrate that the proposed Q-MC methods -SQRT sequence, SOBOL sequence and Korobov Lattice approximate EOF more precisely compared with C-MC method, and consequently, the performance of searching robust optimal solution with EA is improved.
出处
《模式识别与人工智能》
EI
CSCD
北大核心
2011年第2期201-209,共9页
Pattern Recognition and Artificial Intelligence
基金
国家自然科学基金项目(No.60773047)
湖南省自然科学基金项目(No.09JJ6089)
湖南省教育厅项目(No.10C126)资助
关键词
进化算法
鲁棒最优解
拟蒙特卡罗方法
有效目标函数
Evolutionary Algorithm, Robust Optimal Solution, Quasi-Monte Carlo Method, EffectiveObjective Function