期刊文献+

一种非均匀分布问题分布性维护方法 被引量:4

A Diversity Maintenance Method for Non-Uniform Distribution Problem
下载PDF
导出
摘要 几乎所有多目标进化算法(multi-objective optimization evolutionary algorithm,MOEA)都是针对Pareto最优面为均匀分布问题而言.然而现实中很多问题Pareto最优面是非均匀分布的,决策者希望得到一个与Pareto最优面分布类似的解集.现存算法并不能有效解决该问题.对此,提出一种针对于非均匀分布多目标优化问题的维护方法(non-u-niformly diversity maintenance method,NUDMM).该方法定义一个反映个体分布"规则"程度的指标——杂乱度,并设计一种降低种群杂乱度的方法,在未知Pareto最优面分布规律情况下有效剔除造成种群混乱的个体.通过与NSGA-II和SPEA2在不同维数下8个非均匀函数上对比实验,表明NUDMM在有效保持问题真实分布的同时,具有良好的收敛性. Almost all of the multi-objective optimization evolutionary algorithms(MOEAs) are designed for the Pareto optimal front which is distributed uniformly.But in real world optimizations,the Pareto optimal front usually has a non-uniform distribution.A similar solution set distribution with Pareto optimal front is expected to obtain by decision makers.However,the existing algorithms cannot solve such problems effectively.In this paper,a diversity maintenance method for non-uniformly distributed multi-objective optimization problem(NUDMM) is proposed.In the algorithm,an indicator reflecting 'regular' degree of distribution-Messy is defined.And a method to decrease Messy of population is designed,which eliminates disordered individual on the condition that the distribution of the Pareto optimal front is unknown.From an extensive comparative study with NSGA-II and SPEA2 on eight non-uniform distribution test problems,it is observed that the proposed method has a good performance in maintaining the real distribution and convergence.
出处 《电子学报》 EI CAS CSCD 北大核心 2011年第4期946-952,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.60773047 No.61070088) 湖南省自然科学基金(No.09JJ6089 No.10JJ3072)
关键词 多目标优化 多目标进化算法 非均匀分布 分布性维护 测试函数 杂乱度 multi-objective optimization multi-objective evolutionary algorithms diversity maintenance non-uniform distribution test problem messy
  • 相关文献

参考文献17

  • 1Deb K. Multi-objective optimization using evolutionary algorithms [M].Chichester, UK: John Wiley & Sons, 2001.
  • 2公茂果,焦李成,杨咚咚,马文萍.进化多目标优化算法研究[J].软件学报,2009,20(2):271-289. 被引量:399
  • 3Schaffer J D. Some Experiments in Machine Learning Using Vector Evaluated Genetic Algorithms [ D ]. Nashville: Vanderhilt University , PhD thesis, 1984.
  • 4Goldberg,D E. ,Richardson J. Genetic algorithms with sharing for multimodal function optimization [ A ]. Proceedings of the Second International Conference on Genetic Algorithms [ C]. Massachusetts, US:L Erlbaum Associates Inc, 1987,41 - 49.
  • 5Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II - JJ. IEEE Transactions on Evolutionary Computation, 2002,6(2) : 182 - 197.
  • 6Come D W, Jerram N R,KnowlesJ D,Oates M J,PESA-II:region-based selection in evolutionary multiobjective optimization [ A]. Proceedings of the Genetic and Evolutionary Computation Conference( GECCO' 2001 ) [ C ]. San Francisco, California: Morgan Kaufmann Publishers, 2001.283 - 290.
  • 7Zitzler E, Laumanrs M, Thiele L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm [ R ]. Switzerland: TIK-Report 103, ETH,2001.
  • 8Fonseca, C M Fleming,P J. An overview of evolutionary algorithms in multi-objective optimization [ J ]. Evolutionary Computalion, 1995,3(1) : 1 - 16.
  • 9Deb K. Multi-objecave genetic algorithms:problem difficulties and construction of test problems [J].Evolutionary Computation, 1999,7(3) :205 - 230.
  • 10Deb K, TNele D, Laumanns M, Zitzler E. Scalable test problems for evolutionary multiobjective optimization [ A ]. Evolutionary Multiobjective Optimization: Theoretical Advances and Applications [C ]. London: Springer- Verlag, 2005.105 - 145.

二级参考文献39

  • 1郑向伟,刘弘.多目标进化算法研究进展[J].计算机科学,2007,34(7):187-192. 被引量:52
  • 2Kalyanmoy Deb. Multi-Objective Optimization using Evolutionary Algorithms[ M]. UK: John Wiley & Sons, Chichester, 2001. 1-7.
  • 3All Farhang-Mehr and Shapour Azarm. An information-theoretic entropy metric for assessing multi-objective optimization solution set quality. ASME[J]. Journal of Mechanical Design, 2003,125(4) :655 - 663.
  • 4Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II [J]. IEEE Transactions on Evolutionary Computation, 2002, 6 (2) : 182 - 197.
  • 5Kalyanmoy Deb, Sachin Jain. Running Performance Metrics for Evolutionary Multi-Objective Optimization [R ]. Kanpur India: KanGAL Report No. 2002004,2002.
  • 6Kalyanmoy Deb, Manikanth Mohan and Shikhar Mishra. A Fast Multi-objective Evolutionary Algorithm for Ending Well- Spread Pareto-Optimal Solutions[ R]. Kanpur India: KanGAL Report No. 2003002,2003.
  • 7Sanaz Mostaghim, Jiirgen Teich. The role of ε-dominance in multi objective particle swarm optimization methods [A].Proceedings of IEEE Congress on Evolutionary Computation (CEC'2003) [ C]. Canberra,Australia: IEEE Press,2003. 1764 - 1771.
  • 8Miqing Li, Jinhua Zheng, Guixia Xiao. Uniformity assessment for evolutionary multi-objective optimization[ A]. Proceedings of IEEF, Congress on Evolutionary Computation (CEC' 2008) [ C ]. Hongkong: IEEE Press, 2008.625 - 632.
  • 9Schoot J R. Fault tolerant design using single and multicriteria genetic algorithms optimization[ D]. Cambridge: Massachusetts Institute of Technology, 1995.
  • 10Eckart Zitzler, Marco Laumanns, Lothar Tniele. SPEA2: Improving the strength Pareto evolutionary algorithm [ R ]. Zurich, Switzerland: TIK-Report No. 103,2001.

共引文献425

同被引文献44

引证文献4

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部