期刊文献+

一种基于信息传递的分布估计算法 被引量:4

An Estimation of Distribution Algorithm Based on Information Transmission
下载PDF
导出
摘要 借鉴信息传递的概率模型,提出一种求解非数值优化问题的新的分布估计算法.首先根据进化过程中的优良信息建立一个不断更新的先验知识概率模型,以相邻符号出现的频率为基础建立条件传递概率模型,然后通过二者的结合建立了一种后验概率模型并用以指导产生新群体.针对旅行商问题进行的仿真试验表明本文算法可较好地改善分布估计算法的早熟收敛现象. Reference to the probability model of information transmission,a new estimation of distribution algorithm is proposed for non numerical optimization problems.Firstly,an updating model of a priori knowledge probability is built according to the superior information produced during evolution process,and the model of conditional transfer probability is also constructed based on the emerging frequencies of neighboring symbols.Secondly,the model of posterior probability is given by combining the above mentioned probability model to guide new population generating.Finally the presented approach is tested on TSP problems,and the results show that the proposed algorithm can improve the premature convergence of estimation of distribution algorithms.
出处 《电子学报》 EI CAS CSCD 北大核心 2011年第4期967-970,共4页 Acta Electronica Sinica
基金 山西省青年科技基金(No.2010021017-2)
关键词 分布估计算法 信息传递 后验概率 旅行商问题 estimation of distribution algorithms information transmission posterior probability TSP
  • 相关文献

参考文献11

  • 1M Pelikan, D E Goldberg, F Lobo. A Survey of Optimization by Building and Using Probabilistic Models[ R]. ILLiGAL Report No. 99018, University of II linois at Urbana_ Champaign, Illinois Genetic Algorithms Laboratory, Urbana, Illinois, 1999.
  • 2G R Harik, F G.Lobo,and D E Goldberg. The compact genetic algorithm,Proceedings of the International Conference on Evolutionary Computation [ J]. New Jersey, IEEE Service Center, 1998,523- 528.
  • 3S Baluja, Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning [ J ]. Tech. Report CMU-CS-94-163, Carnegie Mellon University, Pittsburgh, Pennsylvania, 1994.
  • 4周雅兰,王甲海,印鉴.一种基于分布估计的离散粒子群优化算法[J].电子学报,2008,36(6):1242-1248. 被引量:28
  • 5T K Paul, H lba, Linear and Combinatorial Optimizations by Estimation of Distribution Algorithms [ A ]. Proceedings 9th MPS Symposium on Evolutionary Computation [ C ]. IPSJ, Japan,2002.1 -8.
  • 6W Bozejko, M Wodeckib, Solving permutational routing problems by population-based metaheuristics [ J]. Computers & Industrial Engineering, 2009.
  • 7V Robles, P D Miguel, P Larranaga. Solving the traveling salesman problem with EDAs [ M ]. Larranaga P, Lozano J A, (eds), Estimation of Distribution Algorithms, Kluwer Academic Publishers,2002, Chapter 10.
  • 8M Ventresca, H R Tizhoosh. A diversity maintaining populaticn-based incremental learning algorithm [ J]. Information Siences, 2008,178: 4038 - 4056.
  • 9M Pefikan, D. E Goldberg, E Cantu-Paz. BOA: the Bayesian Optimization Algorithm [ A ]. Proceedings of the Genetic and Evolutionary Computation Conference GECCO - 99 Volume I [C]. 1999.525 - 532.
  • 10姜单.信息论与编码[M].中国科学技术大学出版社,2004.7.

二级参考文献26

  • 1周驰,高亮,高海兵.基于PSO的置换流水车间调度算法[J].电子学报,2006,34(11):2008-2011. 被引量:24
  • 2J Kennedy,R C Eberhart. Particle swarm optimization[A].in: Proceedings of the IEEE International Joint Conference on Neural Networks [ C ]. Piscataway, NJ: IEEE Service Center, IEEE Press, 1995. 1942 - 1948.
  • 3Qingyun Yang,Jigui sun, Juyang Zhang, Chunjie Wang.A hybrid discrete particle swarm algorithm for open-shop problems [A]. Proceedings of the 6th International Conference on Simulated Evolution And Learning (SEAL 2006) [ C]. Hefei, China, LNCS 4247,2006. 158 - 165.
  • 4K Rameshkumar, R K Suresh, K M Mohanasundaram. Discrete particle swarm optimization (DPSO) algorithm for permutation flowshop scheduling to minimize makspan[ A ]. In: Proc. ICNC 2005 [C]. Changsha, China, LNCS 3612,2005.572 - 581.
  • 5Pant,M Radha, T Singh, V P.A simple diversity guided particle swarm optimization [A]. IEEE Congress on Evolutionary Computation[C]. Singapore, CEC2007. 2007. 3294 - 3299.
  • 6Christopher K. Monson, Kevin D. Seppi, Adaptive Diversity in PSO[ A]. Proceedings of the 8th annual conference on Genetic and evolutionary computation Seattle [ C ]. Washington, USA, 2006.59 - 66.
  • 7M Clerc: Discrete particle swarm optimization, illustrated by the Traveling Salesman Problem[A ]. In: New Optimization Techniques in Engineering[ C ]. Heidelberg, Germany, 2004. 219 - 239.
  • 8A C. Nearchou, The effect of various operators on the genetic search for large scheduling problems[J]. Int. J. Product. E-conom. 2004,88( 1 ) : 191 - 203.
  • 9Zhigang Lian, Xingsheng Gu and Bin Jiao, A similar particle swarm optimization algorithm for permutation flowshop scheduling to minimize makespan[J]. Applied Mathematics and Computation, 2006,175( 1 ) : 773 - 785.
  • 10A Chatterjee, P Siarry. Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization[ J]. Computers & Operations Research, 2006,33 ( 3 ) : 859 - 871.

共引文献98

同被引文献73

  • 1刘振,胡云安.一种多粒度模式蚁群算法及其在路径规划中的应用[J].中南大学学报(自然科学版),2013,44(9):3713-3722. 被引量:12
  • 2钟伟才,刘静,刘芳,焦李成.二阶卡尔曼滤波分布估计算法[J].计算机学报,2004,27(9):1272-1277. 被引量:6
  • 3周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124. 被引量:210
  • 4黄翰,郝志峰,吴春国,秦勇.蚁群算法的收敛速度分析[J].计算机学报,2007,30(8):1344-1353. 被引量:72
  • 5李建武.遗传算法适应值曲面及遗传算法困难度分析[D].天津:天津大学,2003.
  • 6Bonet D J S,Isbell C L,Viola P.MIMIC:Finding Optima byEstimating Probability Densities[C]//Proc.of NIPS’97.Cambridge,UK:MIT Press,1997.
  • 7朱慧明,韩玉启.贝叶斯多远统计推断理论[M].北京:科学出版社,2006.
  • 8Rajkumar R P,Takeshi F P,Pravir K.Advances in SoftComputing[M].London,UK:Spring-Verlag,1999.
  • 9Baluja S.Populatione-based Incremental Learning:A Methodfor Integrating Genetic Search Based Function Optimizationand Competitive Learning[R].Camegle Mellon University,Technical Report:CMU-CS-94-163,1994.
  • 10Chen Tang,et al. Analysis of computational time of simple esfi- marion of distribution algorithms [ J ].IEEE Transactions on Evolutionary Computation, 2010,14( 1 ) : 1 - 22.

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部