期刊文献+

基于短语的统计机器翻译中短语表的过滤 被引量:1

PHRASE TABLE FILTRATION IN PHRASE-BASED STATISTICAL MACHINE TRANSLATION
下载PDF
导出
摘要 大多数基于短语的统计机器翻译系统将任意连续的词串看作短语,并没有考虑短语的合理性。使用了C-value以及短语粘结度两种方法,有效地对短语表进行过滤,减小了搜索空间,同时还提高了翻译质量。实验表明,在翻译结果的BLEU评价提高0.02的情况下,短语表可以缩减为原来的78%。并且当短语表缩减为原来的47.5%时,BLEU评价仍提高了0.0158。 Most phrase-based statistical machine translation systems treat arbitrarily continuous words as phrases without considering their rationality.The paper adopts two methods,C-value and phrase cohesion value,to effectively filter the phrase table,reduce its search space while at the same time ameliorate the translation performance.Experiments show that the phrase table can be reduced to 78% of its size with a 0.02 rise of the BLEU score,or to 47.5% of its size with a 0.0158 rise of the BLEU score.
出处 《计算机应用与软件》 CSCD 2011年第5期28-30,41,共4页 Computer Applications and Software
基金 国家自然科学基金项目(60673041)
关键词 统计机器翻译 短语表过滤 C-VALUE 短语粘结度 Statistical machine translation Phrase table filtration C-value Phrase cohesion value
  • 相关文献

参考文献6

  • 1Brown P F.The Mathematics of Statistical Machine Translation:Parameter Estimation[J].Computational Linguistics,1993,19(2):263-311.
  • 2Frantzi K,Ananiadou S,Tsuji J.The C-value/NC-value Method of Automatie Recognition for Multi-Word Terms[C] //Proceedings of the Second European Conference on Research and Advanced Technology for Digital Libraries.Springer-Verlag,1998.
  • 3Franz Josef Och,Hermann Ney.Discriminative Training and Maximum Entropy Models for Statistical Machine Translation[C].ACL,2002.
  • 4Franz Josef Och.Minimum Error Rate Training for Statistical Machine Translation[C] //Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics (ACL),Japan,Sapporo,July 2003.
  • 5Cenugopal A,Vogel S,Vaibel A.Effective phrase translation extraction from alignment models[C] //Proceedings of the 1st Annual Meeting of the Association of Computational Linguistics (ACL),2003.
  • 6周玉,宗成庆,徐波.基于多层过滤的统计机器翻译[J].中文信息学报,2005,19(3):54-60. 被引量:3

二级参考文献9

  • 1Brown P. F., et al., The Mathematics of Statistical Machine Translation: Parameter Estimation [ J], Computational Linguistics, 1993, 19(2): 263-311.
  • 2Vogel, S., H. Ney, and C. Tillman. 1996. HMM-Based Word Alignment in Statistical Translation [A]. In:Proceedings of the Seventeenth International Conference on Computational Linguistics: COLING-96 [ C ], 836 - 841,Copenhagen, Denmark.
  • 3Wang Y. Y., Grammar Inference and Statistical Machine Translation [D], PhD thesis, School of Computer Science,Carnegie Mellon University, Pittsburgh, PA, 1998.
  • 4Och. F. J., Tillmann C. and Ney H., Improved alignment models for statistical machine translation [ A], In:Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP) [ C ], 20 - 28, College Park, Maryland, USA, 1999.
  • 5Vogel S., et al.., The CMU statistical machine translation system [ A], In: Proceedings of MT Summit [ C ],110 - 117, New Orleans, Louisiana, September, 2003.
  • 6Yamada K. and Knignt K., A Syntax-based Statistical Translation Model [ A ], Annual Meeting of the Ass. for Computational Linguistics [C], Toulouse, France, 523-530, July 2001.
  • 7Andrew Roberts. Automatic Acquisition of Word Classification Using Distribution Analysis of Content Words with Respect to Function Words [ J]. Computer Science, 2000.
  • 8K. Papineni, et al. BLEU: a method for automatic evaluation of MT [R]. Research Report, Computer Science RC22176 (W0109022), September 17, 2001, IBM, 2001.
  • 9Doddington. Automatic Evaluation of Machine Translation Quality Using N-gram Co-Occurrence Statistics [ R].NIST Rearch Report, 2002.

共引文献2

同被引文献2

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部