期刊文献+

一种改进的图聚类的相异度度量方法 被引量:1

AN IMPROVED DISSIMILARITY METRICS APPROACH FOR GRAPH CLUSTERING
下载PDF
导出
摘要 采用凝聚聚类思想进行聚类分析,通过对距离最小的两个类进行循环合并,从而改进了最大最小关联度图聚类方法在针对图中两个邻接结点的度都非常大,而它们连接相同结点的数目极少的问题时,普通聚类方法难以解决两个结点的关联度很大,而实际上相似性并不高的情况,最后通过实例检验了凝聚聚类算法的正确性和有效性。 In this paper the agglomerative clustering concept is employed to conduct the clustering analysis,by combining in circulation two categories with least distance,the problem of the max-min correlativity graph clustering method is improved,of which when aiming at the situation that in the graph two neighbouring nodes both have quite big correlativity but the same nodes they connecting to are extremely few,then usual clustering method is hard to solve it that the two nodes are at big correlativity whereas actually their similarities are low.At last,the correctness and effectiveness of the agglomerative clustering algorithm is validated with experiment.
作者 王小黎
出处 《计算机应用与软件》 CSCD 2011年第5期139-141,共3页 Computer Applications and Software
基金 河南省自然科学基金(0411011400)
关键词 相异度 度量 层次聚类方法 模块性 Dissimilarity Metrics Method of hierarchical clustering Modularity
  • 引文网络
  • 相关文献

参考文献4

  • 1Inderjit S Dhillon,Yuqiang Guan,Brian Kulis.Kernel k-means,Spectral Clustering and Normalized Cuts[C] // KDD'04,August 22-25,2004,Seattle,Washinton,USA.
  • 2解(亻刍),汪小帆.复杂网络中的社团结构分析算法研究综述[J].复杂系统与复杂性科学,2005,2(3):1-12. 被引量:86
  • 3Xiaodi Huang,Peter Eades,Wei lai.A framework of Filtering,Clustering and Dynamic Layout Graphs for visualization[C] //Australian Computer Society,28th Australian Computer Science Conference,2005.
  • 4Newman M E J.Girvan M.Finding and evaluating community structure in networks[J] :Phys Rev E,2004,69(2):026113.

二级参考文献33

  • 1[1]Gibson D,Kleinberg J,Raghavan P.Inferring web communities from link topology[A].Proceedings of the 9th ACM Conference on Hypertext and Hypermedia[C].1998.225-234.
  • 2[2]Flake G W,Lawrence S R,Giles C L,et al.Self-organization and identification of web communities[J].IEEE Computer,2002,35 (3):66-71.
  • 3[3]Adamic A L,Adar E.Friends and neighbors on the web[J].Social Networks,2003,25 (3):211-130.
  • 4[4]Shen-Orr S,Milo R,Mangan S,et al.Network motifs in the transcriptional regulation network of Escherichia coli[J].Nature Genetics,2002,31 (1):64-68.
  • 5[5]Milo R,Shen-Orr S,Itzkovitz S,et al.Network motifs:simple building blocks of complex networks[J].Science,2002,298 (5594):824-827.
  • 6[6]Holme P,Huss M,Jeong H.Subnetwork hierarchies of biochemical pathways[J].Bioinformatics,2003,19 (4):532-538.
  • 7[7]Girvan M,Newman M E J.Community structure in social and biological networks[J].Proc Natl Acad Sci,2001,99 (12):7 821-7 826.
  • 8[8]Gleiser P,Danon L.Community structure in jazz[J].Advances in Complex Systems,2003,6 (4):565-573.
  • 9[9]Garey M R,Johnson D S.Computers and Intractability:A Guide to the Theory of NP-Completeness[M].San Francisco:W.H.Freeman Publishers,1979.
  • 10[10]Scott J.Social Network Analysis:A Handbook[M].2nd ed.London:Sage Publications,2002.

共引文献85

同被引文献6

  • 1M Girvan,ME J Newman. Community Structure in Social an Biologica| Networks [C ]//Proceedings of the National Academy of Sciences of the United States of America, 2002.
  • 2M E J Newman. Fast Algorithm for Detecting Cmlmunity Structure in Networks [ J ]. Phys Rev E, 2004,69 ( 6 ) : 066-133.
  • 3Sudipto Guha, Rajeev Rastogi,Kyuseok Shim. Cure: An eflcient Clustering Algorithm for Large Databases [C] // Proceedings of the Fourth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1995.
  • 4G Karypis, E H Han ,V Kumar. Chameleon : A Hierarchical Clustering Algorithm Using Dynamic Modeling [J]. IEEE Transaction of Computer, 1999,32(8) :68-75.
  • 5袁野,王国仁.面向不确定图的概率可达查询[J].计算机学报,2010,33(8):1378-1386. 被引量:11
  • 6于慧娟,崔军,毋晓志,李伟.一种改进的凝聚图聚类方法[J].山西煤炭管理干部学院学报,2010,23(3):169-170. 被引量:1

引证文献1

;
使用帮助 返回顶部