期刊文献+

基于HMM的自动图像标注方法

AUTOMATIC IMAGE ANNOTATION BASED ON HMM
下载PDF
导出
摘要 自动图像标注技术已经成为弥补"语义鸿沟"的一种有效途径。提出基于隐马尔科夫模型HMM(Hidden Markov Model)的自动图像标注方法,不仅有效地挖掘关键词的语义视觉特征分布,从而建立图像—关键词的对应关系;而且通过融合关键词的共生关系,高效地获取关键词—关键词的语义关联。为此,建立图像—关键词与关键词—关键词的多视角相关模型,有助于解决自动图像标注任务。最后,在COREL图像数据集上的一系列实验结果,验证了提出方法的有效性。 Automatic image annotation is a feasible way to reduce "semantic gap".The hidden Markov model(HMM)-based automatic image annotation method proposed in this paper can effectively mine the semantic visual feature distribution of each keyword in order to set up the corresponding relations between the image and the keyword;moreover,it can also efficiently attain the semantic correlation by combining the co-occurrence relation of the keywords.Therefore to build correlated multi-prospective models of image-keyword relation and keyword-keyword relation will be helpful to fulfilling the task of automatic image annotation.At last,the validity of the proposed method is verified by a series of experimental results conducted on COREL image database.
作者 陈娜
出处 《计算机应用与软件》 CSCD 2011年第5期259-261,共3页 Computer Applications and Software
关键词 HMM 自动图像标注 语义鸿沟 共生关系 HMM Automatic image annotation Semantic gap Co-occurrence relation
  • 相关文献

参考文献8

  • 1Mori Y,Takahashi H,Oka Ft.Image-to-word transformation based on dividing and vector quantizing images with words[C] // Proc.oflntl.Workshop on Multimedia Intelligent Storage and Retrieval Management (MISRM99),Orlando,Oct.1999.
  • 2Duygulu P,Barnard K,Freitas N,et al.Object recognition as machine translation:learning a lexicon for a fixed image vocabulary[C] // Proc.of European Conf.on Computer Vision (ECCV02),Copenhagen,Denmark,May.2002:97-112.
  • 3Jeon J,Lavrenko V,Manmatha R.Automatic image annotation and retrieval using cross-media relevance models[C] //Proc.of Int.ACM SIGIR Conf.on Research and Development in Information Retrieval (ACM SIGIR'03),Toronto,Canada,Jul,2003:119-126.
  • 4Lavrenko V,Manmatha R,Jeon J.A model for learning the semantics of pictures[C] // Proc.Of Advances in Neural Information Processing Systems (NIPS'03),2003.
  • 5Feng S,Manmatha R,Lavrenko V.Multiple bernoulli relevance models for image and video annotation[C] // Proc.of IEEE Int.Conf.on Computer Vision and Pattern Recognition (CVPR' 04),Washington DC,USA,Jun.2004:1002-1009.
  • 6Shi J,Malik J.Normalized cuts and image Segmentation[J].IEEE Trans,on Pattern Analysis and Machine Intelligence,2000,22(8):888-905.
  • 7Ghoshal A,Khudanpur S.Hidden Markov models for automatic annotation and content-based retrieval of images and video retrieval[C] // Proc.of ACM Int.Conf.on SIGIR (ACM SIGIR '05),New York,USA,Aug,2005:541-551.
  • 8Ghoshal A,Ircing P,Khudanpur S.Hidden Markov models for automatic annotation and content-based retrieval of images and video[C] // Proc.of ACM SIGIR Int.Conf.on Image' Retrieval,Brazil,Aug,2005:544-551.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部