期刊文献+

玉米对纳米TiO_2的吸收和累积 被引量:3

THE UPTAKE AND ACCUMULATIN OF TiO_2 NANOPARTICLES BY MAIZE PLANTS
下载PDF
导出
摘要 研究了玉米对不同浓度及粒径纳米TiO2的吸收和累积,并应用同步辐射微束X射线荧光分析(μ-XRF)在微观尺度表征了玉米根中纳米TiO2的分布.结果表明,纳米TiO2主要累积在玉米根部,且在根部的累积量随暴露浓度的增加而增加;茎叶中TiO2累积很少,其在玉米体内的传输因子小于0.01.根中纳米TiO2的累积与其在溶液中的分散稳定性及表面电荷密切相关,团聚和沉降明显降低玉米根对纳米颗粒的吸收和累积.粒径较大的纳米TiO2在玉米根中的累积量较少,天然有机质胡敏酸(HA)的存在显著降低玉米根对纳米TiO2的吸收(p<0.05).同步辐射μ-XRF分析为植物体内纳米TiO2颗粒的分布提供了直接证据,纳米TiO2主要分布在根表皮层,木质部中含量极少,因而限制了纳米TiO2在植物体内的迁移. The uptake and accumulation of TiO2 nanoparticles in maize were investigated in this study.Synchrotron microbeam X-ray fluorescence(μ-XRF) analysis was used to directly visualize distribution of nano-TiO2 in maize roots.The result showed that nano-TiO2 accumulated mainly in maize roots,and TiO2 accumulation in roots increased with increasing concentration of TiO2 nanoparticles suspended in solution.However,the contents of TiO2 in maize shoots were very low,and the root-to-shoot translocation factor of nano-TiO2 was lower than 0.01.The accumulation of nano-TiO2 in maize roots was closely related to its surface charge and suspension stability.Aggregation and sedimentation obviously reduced the uptake and accumulation of nano-TiO2 in maize roots.Nano-TiO2 contents in maize roots were lower when exposed to nano-TiO2 in bigger size.Humic acid(HA) in suspension significantly(p〈0.05) reduced the uptake of nano-TiO2 by maize roots.Observation with μ-XRF provides some insight into the characteristic of nano-TiO2 accumulation in maize roots.Nano-TiO2 mainly accumulated in the epidermal cells of roots with very limited transportation into the root interior,limiting its translocation from roots to shoots.
出处 《环境化学》 CAS CSCD 北大核心 2011年第5期903-907,共5页 Environmental Chemistry
基金 973项目(2011CB936001)资助
关键词 纳米TIO2 玉米 吸收 传输 μ-XRF nano-TiO2 maize uptake translocation μ-XRF.
  • 相关文献

参考文献17

  • 1Nel A, Xia T, Madler L, et al. Toxic potential of materials at the nanolevel[ J]. Science, 2006, 311 (5761) : 622-627.
  • 2Joachim C. To be nano or not to be nano[J]. Nat Mater, 2005, 4:107-109.
  • 3Tsuji J S, Maynard A D, Howard P C, et al. Research strategies for safety evaluation of nanomaterials, part Ⅳ: Risk assessment of nanopartictes[J]. Toxicol Sci, 2006, 89 (1) : 42-50.
  • 4Savage N, Thomas T A, Duncan J S. Nanotechnology applications and implications research supported by the US Environmental Protection Agency STAR grants program[J], J Environ Monitor, 2007, 9 (10) : 1046-1054.
  • 5Klaine S J, Alvarez P J J, Batley G E, et al. Nanomaterials in the environment : Behavior, fate, bioavailability, and effects[ J ]. Environ Toxicol Chem, 2008, 27 (9): 1825-1851.
  • 6Colvin V L. The potential environmental impact of engineered nanomaterials[ J]. Nat Biotechnol, 2003, 21 (10) : 1166-1170.
  • 7Ma X M, Geiser-Lee J, Deng Y, et al. Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation[ J]. Sci Total Environ, 2010, 408 (16) : 3053-3061.
  • 8Nair R, Varghese S H, Nair B G, et al. Nanoparticulate material delivery to plants[J~. Plant Sci, 2010, 179 (3) : 154-163.
  • 9Kurepa J, Paunesku T, Vogt S, et al. Uptake and distribution of ultrasmall anatase TiO2 Alizarin red S nanoconjugates in Arabidopsis thaliana[J]. Nano Lett, 2010, 10 (7) : 2296-2302.
  • 10Karin Birbaum, Robert Brogioli, Maya Schellenberg, et al. No evidence for cerium dioxide nanoparticle translocation in maize plants [ J ]. Environ Sci Technol, 2010, 44 (22) : 8718-8723.

同被引文献15

引证文献3

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部