期刊文献+

基于力场转换理论的图像粗大边缘检测方法 被引量:6

Image Edge Detection Algorithm Based on Force Field Transformation
原文传递
导出
摘要 基于粗大边缘的异源图像匹配在导航制导等领域具有广阔的应用前景,但是现有边缘检测方法很难提取出异源图像中的粗大边缘。根据异源图像成像原理和灰度分布特点,提出一种基于力场转换理论的异源图像粗大边缘检测新方法。首先,根据引力概念计算图像中各像素点受到合力的大小和方向;其次,为了去除光照和异源图像灰度不同的影响,对图像中像素点所受合力的大小进行归一化处理;然后,对归一化后的图像进行二值化分割以获得边缘像素点所在的区域;最后,通过实验研究粗大边缘像素点的合力大小和方向特征,由此得到了粗大边缘点的确定方法。实验结果表明:与Canny边缘检测方法相比,该方法对异源图像间的粗大边缘具有很好的边缘检测效果,与先分割再提取边缘的方法相比,该方法可以提取灰度值分布较集中且噪声较大的红外(IR)图像粗大边缘。 Multi-modality image matching based on gross edges has a wide application prospect, but traditional edge detection algorithms are not able to extract good gross edge features. In this paper, a novel edge detection algorithm based on force field transformation is proposed according to the imaging principle and the gray distribution of multi-modality images. Firstly, the force field magnitude and direction of each pixel can be calculated by the concept of gravitational force. Secondly, in order to eliminate the impact of changeable illumination and the difference between gray distributions, the force field magnitude of each pixel is normalized. Then, the region of the edge can be obtained through binary processing of the normalized image. Finally, the properties of the force magnitude and the direction at the gross edge region are analyzed, and the gross edge detection method is proposed accordingly. Experimental results show that the proposed algorithm performs better than the traditional algorithms, and it performs better than the method of detecting the edge on segmenting images for ifrared (IR) image.
出处 《航空学报》 EI CAS CSCD 北大核心 2011年第5期891-899,共9页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(60974105 61074161) 航空科学基金(20100152003) 南京航空航天大学研究生创新基地(实验室)开放基金(201001007)
关键词 异源图像 边缘检测 力场转换理论 力场大小 力场方向 multi-modality image edge detection force field transformation force field magnitude force field direction
  • 相关文献

参考文献16

二级参考文献84

共引文献140

同被引文献64

  • 1管海燕,郭建星.常用图像边缘检测算子定位精度对比研究[J].测绘与空间地理信息,2005,28(1):20-24. 被引量:15
  • 2杨炳儒,高静,宋威.认知物理学在数据挖掘中的应用研究[J].计算机研究与发展,2006,43(8):1432-1438. 被引量:3
  • 3周培德,付梦印,黄源水,刘羿彤.红外图像边缘提取的算法[J].兵工学报,2007,28(5):524-527. 被引量:4
  • 4肖甫,吴慧中,肖亮,汤杨.一种光照鲁棒的图像拼接融合算法[J].中国图象图形学报,2007,12(9):1671-1675. 被引量:14
  • 5Li Jing,Allinson N M.A comprehensive review of current local features for computer vision [J].Neurocomputing,2008,71(10-12):1771-1787.
  • 6Nixon M S,Liu X U,Direkoglu C,et al.On using physical analogies for feature and shape extraction in computer vision [J].The Computer Journal,2011,54(1):11-25.
  • 7Liu Heng.Force field convergence map and Log-Gabor filterbased multi-view ear feature extraction [J].Neurocomputing,2011,76(1):2-8.
  • 8Sun Gen-yun,Liu Qin-huo,Liu Qiang,et al.A novel approach for edge detection based on the theory of universal gravity [J].Pattern Recognition,2007,40(10):2766-2775.
  • 9Lopez-Molina C,Bustince H,Fernandez J,et al.A gravitational approach to edge detection based on triangular norms [J].Pattern Recognition,2010,43(11):3730-3741.
  • 10Direkoglu C,Nixon M S.On using an analogy to heat flow forshape extraction [J].Pattern Analysis and Applications,2013,16(2):125-139.

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部