期刊文献+

基于LS-SVM非线性内模控制在焊缝跟踪中的运用

Non-linear uncertain systems based on dynamic compensation inverse of LS-SVM internal model control
下载PDF
导出
摘要 针对单纯的模糊控制器在焊接机器人的焊缝跟踪中的控制精度欠佳、自适应性不强等问题,设计了一种新的用于焊缝跟踪的LS-SVM非线性内模控制器。通过样本数据建立系统固定的LS-SVM逆模型,与系统串联成精确的伪线性系统,对伪线性系统采用鲁棒性强的内模控制。仿真结果表明该方法具有很好的跟踪结果。 For the non-linear uncertain systems and the traditional non-linear internal model control in the control deficiencies,this paper presents a Least Squares Support Vector Machines(LS-SVM) internal model control based on dynamic compensation inverse for nonlinear uncertain systems method.At the same time,in the introduction of LS-SVM to establish the inverse model,there will be Model Free Adaptive Control(MFAC) method as an additional controller.Both forward and backward models will be automatically modified online when they deviate from the plant.The simulation results show that the method proposed in this paper has good robustness of time-varying uncertainties remain better tracking results,with better real-time performance,robustness,and online calibration.
出处 《微型机与应用》 2011年第9期79-81,共3页 Microcomputer & Its Applications
关键词 非线性不确定系统 最小二乘支持向量机 逆系统方法 内模控制 non-linear uncertain systems least squares support vector machines inverse system method internal model control
  • 相关文献

参考文献5

  • 1周涌,陈庆伟,胡维礼.内模控制研究的新发展[J].控制理论与应用,2004,21(3):475-482. 被引量:66
  • 2赵曜.论两种改进内模控制系统的等价性[J].控制与决策,2007,22(10):1170-1172. 被引量:6
  • 3SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers [J]. Neural Processing letters. 1999,9(3) : 293-300.
  • 4SUYKENS J A K, VANDEWALLE J. Muhiclass least squares support vector machines[C]. IJCNN'99 International Joint Conference on Neural Networks. Washington DC. 1999.
  • 5CORTES C, VAPNIK V. Support vector networks [J]. Machine Learning, 1995,20 : 273-297.

二级参考文献91

  • 1周涌,陈庆伟,胡维礼.内模控制研究的新发展[J].控制理论与应用,2004,21(3):475-482. 被引量:66
  • 2朱宏栋,邵惠鹤.基于改进IMC的开环不稳定时滞过程控制[J].控制与决策,2005,20(7):727-731. 被引量:14
  • 3袁德成,韩阳,王贵成,李健.非线性辅助内模控制(NAIMC)系统研究[J].信息与控制,1995,24(4):230-236. 被引量:2
  • 4AOYAMA A,DOYLE Ⅲ F J.A fuzzy neural-network approach for nonlinear process control [J].Engineering Applications of Artificial Intelligence,1995,8(5):483-498.
  • 5POTTMANN M,JORGL H P.Radial basis function networks for intemal model control [J].Applied Mathematics and Computation,1995,70(2/3):283-298.
  • 6KAMBHAMPATI C,CRADDOCK R J,THAM M,et al.Inverse model control using recurrent networks [J].Mathematics and Computers in Simulation,2000,51(3/4):181-199.
  • 7RIVALS I,PERSONNAZ L.Nonlinear internal model control using neural networks:application to processes with delay and design issues[J].IEEE Trans on Neural Networks,2000,11 ( 1 ):80-90.
  • 8MENKEN G J.Modularly structured B-spline networks for internal model control [C]//Proc of American Control Conference.Albuquerque:ACCC,1997:2001-2005.
  • 9FACHE A,DUBOIS O,BILLAT A.On the invertibility of the RBF model in a predictive control stategy [C]//European Symposium on Artificial Neural Networks.Bruges:IEEE Press,1999:381-386.
  • 10NEYER M D,GOREZ R.Fuzzy and quantitative model-based control systems for robotics manipulators [J].Int J of Systems Science,1993,24(10):1863-1883.

共引文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部