摘要
综合考察了贝叶斯模型、决策树模型、向量空间模型、最大熵模型在汉语词义消歧上的应用,并对它们的消歧效果进行比较,为词义消歧模型的选择与应用奠定基础。
Many modeling methods corresponding to different machine learning methods have been used for computational linguistic problems.To determine an appropriate modeling method,and select an effective machine learning methods is most important for statistical word sense disambiguation.In this paper the Bayesian model,decision tree model,vector space model and maximum entropy are probed comprehensively,Their effects on Chinese word sense disambiguation are compared,in order to build foundation for selecting and applying word sense disambiguation models.
出处
《北京信息科技大学学报(自然科学版)》
2011年第2期13-18,共6页
Journal of Beijing Information Science and Technology University
基金
国家自然科学基金项目(60873013
61070119)
北京大学计算语言学教育部重点实验室开放课题基金(KLCL-1005)
北京市属市管高等学校人才强教计划资助项目(PHR201007131)
关键词
词义消歧
机器学习
特征提取
word sense disambiguation
machine learning
feature extraction