期刊文献+

代价敏感支持向量机的投影次梯度求解方法

Projection Sub-Gradient Solving Method for Cost-Sensitive SVM
下载PDF
导出
摘要 针对传统的分类算法以及精度作为评价指标不能够满足现实分类问题的需要,将代价敏感方法引入支持向量机中,提出一种新的学习算法CSSVM,并得到了类似于Pegasos的投影次梯度求解方法,用于大规模数据的处理。Pegasos的步骤包括初始化、迭代、确定梯度下降的步长、确定梯度下降方向、更新、投影和结束。实验结果表明,该算法能有效提高识别率和识别精度,具有一定的竞争力。 Aiming at the traditional method and its precision which used as evaluation index can not meet the requirements of practical classification.Introduce cost sensitive method into SVM,put forward a new learning algorithm CSSVM(cost-sensitive SVM),and acquire projection sub-gradient solving method which is similar as Pegasos to deal with large scale data.The Pegasos process includes initialization,iteration,ascertaining step lengths and direction of sub-gradient descent,update,projection and the end.The test results show that this algorithm can effectively improve identifying rate and identifying precision and it is competitive.
作者 梁万路
机构地区 解放军炮兵学院
出处 《兵工自动化》 2011年第4期85-87,共3页 Ordnance Industry Automation
基金 国家自然科学基金项目"统计学习理论与算法研究"(60575001)和"基于损失函数的统计机器学习算法及其应用研究"(60975040)
关键词 不均衡数据 代价敏感 支持向量机 大规模数据 class-imbalance data cost-sensitive SVM large scale data
  • 相关文献

参考文献11

  • 1张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2276
  • 2Cortes C, Vapnik. V. Support vector networks. Machine Learning, 1995(20): 273-297.
  • 3Duda R O,Stork D G,Hart P E. Pattern Classification (2nd), New York: Wiley, 2001.
  • 4杨明,尹军梅,吉根林.不平衡数据分类方法综述[J].南京师范大学学报(工程技术版),2008,8(4):7-12. 被引量:28
  • 5Y. Sun, M. S. Kamela, A. K. C. Wong and Wang, Y.Cost-sensitive boosting for classification of imbalanced data. Pattern Recognition, 2007, 40(12): 3358-3378.
  • 6Masnadi~Shirazi, H. and Vasconcelos, N. Asymmetric boosting. Proc. of ICML, 2007.
  • 7W. Fan, S. Stolfo, J. Zhang and Chan, P. Adacost:Misclassification cost-sensitive boosting. Proc.of ICML, 1999.
  • 8F. R. Bach, D. Heckerman and Horvitz, E. Considering cost asymmetry in learning classifiers. Journal of Machine Learning Research.
  • 9Shai Shalev-Shwartz. Yoram Singer. Nathan Srebro, Pegasos: Primal Estimated sub-GrAdient SOlver for SVM.
  • 10Hazan, E., Kalai, A., Kale, S., &Agarwal, A. (2006). Logarithmic regret algorithms for online convex optimization. COLT.

二级参考文献32

  • 1[18]Schapire R E,Singer Y.Improved boosting algorithms using confidence-rated predictions[J].Machine Learning,1999,37(3):297 -336.
  • 2[19]Fan W,Stolfo S J,Zhang J,et al.AdaCost:misclassification cost-sensitive boosting[C]//Bratko I,Dzeroski S.Proc of the 16th Intern Conf on Meachine Learning.Morgan Kanfmann,1999:97-105.
  • 3[20]Joshi M V,Kumar V,Agarwal R C.Evaluating boosting algorithms to classify rare classes:comparison and improvements[C]// Cercone N,Lin T Y,Wu X.Pro of the 2001 IEEE Intern Conf on Data Mining.Washington DC:IEEE Computer Society Press,2001:257 -264.
  • 4[21]Chawla N V,Japkowicz,Kolcz A.Editorial:special issue on learning from imbalaneed data sets[J].SIGKDD Explorations Special Issue on Learning from Imbalanced Datasets,2004,6(1):1 -6.
  • 5[22]Chawlal N V,Lazarevic A,Hall L O.SMOTEBoost:improving prediction of the minority class in boosting[C]// The 7th European Conf on Principles and Practice of Knowledge Discovery in Databases.Berlin:Springer,2003:107-119.
  • 6[23]He Guoxun,Han Hui,Wang Wenyuan.An over-sampling expert system for learning from imbalaneed data sets[J].Neural Networks and Brain,2005,1:537 -541.
  • 7[25]Tao Ban,Shigeo Abe.Implementing multi-class classifiers by one-class classification methods[C]// 2006 International Joint Conference on Neural Networks Sheraton Vancouver Wall Centre Hotel.Vancouver,BC:IEEE Press,2006:16 -21,327 -332.
  • 8[26]Sun Y.Cost-sensitive boosting for classification of imbalanced data[D].Canada:University of Waterloo,2007.
  • 9[27]Constantinopoulos C,Likas A.Semi-supervised and active learning with the probabilistic RBF classifier[J].Artificial Neural Networks,2008,71(13):2489-2498.
  • 10[28]Chen C,Liaw A,Breiman L.Using random forests to learn unbalanced data[R].California:University of California,2004.

共引文献2300

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部