期刊文献+

微分矩阵模型下的树高生长率

Tree Height Growth Rate Modeled with Differentiation Matrix
下载PDF
导出
摘要 将微分矩阵引入到树木生长率中,给出微分矩阵的算法,及4阶、无限阶的收敛图,以树高生长率为例,将树高生长率模型和本文提出的方法所得的树木生长率模型比较。本文方法如果得到一个稠密矩阵,就表明得到的树木生长率模型较优,并对其进行说明。 The differentiation matrix was introduced into forest growth rate, the algorithm of differentiation matrix, and the convergence diagrams with fourth-order infinite differences were obtained individually. Taking height growth rate of the trees as an example, the growth rate model proposed based on this method was compared with the traditional height growth rate model. If a dense matrix were obtained, it meant that a better growth rate model for the trees was obtained.
出处 《西南林学院学报》 CAS 2011年第3期45-48,共4页 Journal of Southwest Forestry College
基金 国家自然科学基金项目(10871230)资助 浙江省自然科学基金项目(Y607480)资助 浙江农林大学研究生科研创新基金项目(2112009044)资助
关键词 微分矩阵 树木生长率 MATLAB differentiation matrix tree height growth rate matlab
  • 相关文献

参考文献10

  • 1Van Gadow K,Hui G Y.Modeling Forest Growth and Thinning[M].Gottingen:Cuvillier Verlag G(o)ttingen,1998.
  • 2Rose D J,Willoughby R A.Sparse Matrices and Their Applications[M].New York:Plenum Press,1972.
  • 3Greenbaum A,Trefethen L N.Gmres/cr and Arnoldi/Lanczos as matrix approximation problems[J].Siam J Sci Compat,1994,15(2):359 -368.
  • 4Weideman J A C,Cloot A.Spectral methods and mappings for evolution equations on the infinite line[J].Computer Methods in Applied Mechanics and Engineering,1990,80:467-481.
  • 5Lakin W D.Differentiation matrices for arbitrarily spaced grid points[J].Intern J Number Meth Engr,1986,23(2):209 -218.
  • 6李天林.循环矩阵的几个性质[J].数学通报,1982,(2):30-30.
  • 7张爱萍.循环矩阵的性质及其对角化[J].广西师院学报(自然科学版),2000,17(4):10-13. 被引量:7
  • 8Allen T F H,O'Neill R V,Hoekstra T W.Interlevel Relations in Ecological Research and Management:Some Working Principles from Hierarchy Theory[M].孟宪宇,译.北京:中国林业出版社,2006.
  • 9孟宪宇.测树学[M].北京:中国林业出版社,1994.81-87.
  • 10张少昂,王冬梅.Richards方程的分析和一种新的树木理论生长方程[J].北京林业大学学报,1992,14(3):99-105. 被引量:24

二级参考文献5

  • 1俞新妥,福建林学院学报,1989年,9卷,3期,233页
  • 2王冬梅,1987年
  • 3张少昂,东北林业大学学报,1986年,14卷,3期,17页
  • 4Yang Y C,J Jap For Soca,1981年,63卷,294页
  • 5王萼芳.高等代数教程.北京:清华大学出版社,1996.

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部