期刊文献+

基于非下采样Contourlet变换的极化SAR图像融合与去噪 被引量:2

Fusion and speckle reduction of multi-polarization SAR images based on nonsubsampled Contourlet transform
原文传递
导出
摘要 针对非下采样Contourlet变换(NSCT)在处理噪声影像中具有的优势,以及同极化SAR图像(HH、VV)之间的相关性与互补性,本文实验了一种基于非下采样Contourlet变换的极化图像融合方法。该方法首先对每个极化图像进行多尺度、多方向分解,然后对不同分解子带系数分别采用有利于斑点噪声去除和信息增强的融合规则进行融合,最终通过NSCT反变换得到融合图像。通过信息熵、相关系数以及等效视数等指标的评价,验证了该方法可以有效地实现信息增强,同时该方法也在一定程度上降低了斑点噪声的负面影响。 Nonsubsampled Contourlet Transform (NSCT) is a newly improved multiresolution geometry analysis technique based on Contourlet Transform. NSCT can represent images more effectively because of its flexible multi-resolution, multi-direction and shift invarianee, and has been approved to be very suitable for noisy images, such as SAR images. A method of fusing and reducing the speckles of muhi-polarization SAR images based on NSCT was proposed in the paper. The images were firstly decomposed by NSCT, and then different fusion rules of decomposed coefficients were chosen with the consideration of denoising and information enhancing. Finally, the fused NSCT coefficients were reconstructed to obtain fusion result. In this paper, HH and VV co-polarization images were fused using the proposed method, and the entropy, correlation coefficient and Equivalent Number of Looks (ENL) were calculated to evaluate the results. Experiments showed that the proposed algorithm could obtain a good fused image with the improved spatial information, at the same time the speckle noises could be reduced to some extent.
出处 《测绘科学》 CSCD 北大核心 2011年第3期70-72,共3页 Science of Surveying and Mapping
基金 中国测绘科学研究院基本科研业务费资助(7771032)
关键词 多极化SAR图像 融合 NSCT 降噪 Multi-polarization SAR image fusion NSCT speckle reduction
  • 相关文献

参考文献14

  • 1Kaplan L M. Improved SAR target detection via extended fractal features [ G]//IEEE Trans. Aeros. Elect. Sys. , 2001, 37(2):436-451.
  • 2V an Zyl J J, et al. Classification of earth terrain using polarimetric SAR images [ J ] . Journal of Geophysical Research, 1989, 94 (6): 7049-7057.
  • 3黄世奇,刘代志,胡明星,王仕成.基于小波变换的多时相SAR图像变化检测技术[J].测绘学报,2010,39(2):180-186. 被引量:37
  • 4Zhong Lu, Daniel Dzurisina, Hyung-Su PJung, et al. Radar image and data fusion for natural hazards characterisation [J] . International Journal of hnage and Data Fusion, 2010, 1(3) : 217-242.
  • 5Arief Wijaya, Prashanth Reddy Marpu, Richard Gloaguen. Discrimination of peatlands in tropical swam Pforests using dual-polarimetric SAR and Landsat ETM data [ J] . International Journal of Image and Data Fusion,2010, 1(3): 257-270.
  • 6Lee J S. Digital image enhancement and noise filtering by use of local statistics [ G ] //IEEE Transactions on Pattern Analysis and Machine Intelligence. 1980, 2(2) : 165-168.
  • 7Lopes A, Touzi R, Nezry E. Adaptive speckle filters and scene heterogeneity [ G ] //IEEE Transactions on Geoscience and Remote Sensing. 1990, 28 ( 6 ) : 992-1000.
  • 8Lopes A, Touzi R, Nezry E. Adaptive Speckle Filters and Scene Heterogeneity [ C ] //IEEE Trans. Geoscience and Remote Sensing. 1990, 28 (6) : 992-1000.
  • 9KuanDT, Sawchu KAA, StrandTC, et al. Adaptive Restoration of Images with Speckle [ G ] //IEEE Trans. Assp, 1987, 35 (3):373-383.
  • 10曹云刚,严丽娟,郑泽忠.一种基于图像边缘特征的SAR斑点滤波算法[J].测绘科学,2010,35(3):165-166. 被引量:3

二级参考文献26

共引文献38

同被引文献24

  • 1焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 2Lopes A, Touzi R, Nezry E. Adaptive speckle filters andscene heterogeneity [ C ]//IEEE Transactions Geoscienceand Remote Sensing, 1990, 28(6) :992-1000.
  • 3Frost V S,Stiles J A. A model for radar images and its ap-plication to adaptive digital filtering of multiplicative noise[C]//IEEE Transactions on Pattern Analysis and MachineIntelligence, 1982,4(2) : 157-166.
  • 4Lopes A,Nezry E,Touzi R. Maximum a posterior filteringand first order texture models in SAR images [ C ]//Pro-ceedings of IEEE International Geoscience and RemoteSensing Symposiun'90. Washington D. C, 1990 : 2409-2412.
  • 5Lopes A,Nezry E,Touzi R. Maximum a posterior filteringand first order texture models in SAR images [ C ]//Pro-ceedings of IEEE International Geoscience and RemoteSensing Symposiun'90. Washington D. C, 1990 : 2409-2412.
  • 6Do M N, Vetterli M. The Contourlet transform: An effi-cient directional multiresolution image representation[C]//IEEE Transactions on Image Processing, 2005 , 14(12):2091-2106.
  • 7Cunha A L, Zhou Jian-ping, Do M N. The nonsubsampledContourlet transform : theory,design and application[C]//IEEE Transactions on Image Processing, 2006, 15(10):3089-3101.
  • 8Xie H,Pierce L E,Ulaby F T. Statistical properties oflogarithmically transformed speckle [ C ]//IEEE Transac-tions Geoscience and Remote Sensing,2002, 40 ( 3 ):721-727.
  • 9Gleich D,Datcu M. Gauss-Markov model for wavelet-basedSAR image despeckling [ C J//IEEE Signal ProcessingLetters,2006,13(6) :365-368.
  • 10AS Lewis, G Knowles. Image compressing using the 2-Dwavelet transform [ C ] //IEEE Transactions on Image Pro-cessing, 1992, 1(2) :224-250.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部