期刊文献+

高光谱遥感影像SVM分类中训练样本选择的研究 被引量:11

Use of mixed pixels as training samples for hyperspectral remote sensing image classification by SVM
原文传递
导出
摘要 支持向量机(SVM)分类的关键是发现分类最优超平面及类别间隔,而混合像元比纯净像元更接近类别边界,更容易找出最优超平面。本文针对SVM分类器的特点,在高光谱数据分类中采用混合像元作为训练样本对SVM进行训练,试验表明采用类别边界上的混合像元作为训练样本是可行的,能够获得与纯净训练样本接近的分类精度,进一步验证了SVM分类对训练样本空间分布依赖度较低的特点。 The key idea of Support Vector Machine(SVM) classification is locating an optimal separating hyper-plane and maximizing the margin between two classes.It is obvious that mixed pixels are much closer to the boundary of classes than pure pixels and much easier to locate the optimal separating hyper-plane.The paper used mixed pixels as training samples for SVM classifier in hyperspectral image classification.Experimental results showed that hyperspectral remote sensing image classification by SVM using mixed pixels was feasible,and its accuracy was similar to the accuracy derived from the use of a conventional pure pixel training set.The characteristic of the SVM classifier was demonstrated further that it has low dependence on the spatial distribution of training samples.
出处 《测绘科学》 CSCD 北大核心 2011年第3期127-129,共3页 Science of Surveying and Mapping
基金 国家863高技术研究发展计划项目(2007AA12Z162) 教育部高校博士学科点专项基金项目(20070290516) 国家自然科学基金项目(40401038 40871195)
关键词 支持向量机(SVM) 最优超平面 混合像元 遥感分类 support vector machine(SVM) optimal separating hyper-plane mixed pixel remote sensing classification
  • 相关文献

参考文献8

二级参考文献45

  • 1VapnikVN.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 2Jeon B, Landgrebe D A. Partially Supervised Classification Using Weighted Unsupervised Clustering[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(2): 1073-1079.
  • 3Jeon B, Landgrebe D A. A New Supervised Absolute Classifier[A]. Proc. of IEEE International Geoscience and Remote Sensing Symposium(IGARSS), 1990.
  • 4Vapnik V. The Nature of Statistical Learning Theory[M]. Springer, NY, 1995.
  • 5Yu H, Han J, Chang K C. PEBL: Positive Example Based Learning for Web Page Classification Using SVM[A]. In Proc. 8th Int. Conf. Knowledge Discovery and Data Mining[C]. Edmonton Canada, 2002.
  • 6Lee W S, Liu B. Learning from Positive and Unlabeled Examples Using Weighted Logistic Regression[A]. Proceedings of the Twentieth International Conference on Machine Learning[C]. Washington, DC USA, 2003.
  • 7Schlkopf B, Platt J C, Shawe-Taylor J, et al. Estimating the Support of A High-Dimensional Distribution[J]. Neural Computation, 2001, 13(7): 1443-1471.
  • 8Tax D. One-class Classification[D]. USA: Delft University of Technology, 2001.
  • 9Schlkopf B, Smola A. Learning with Kernels Support Vector Machines, Regularization, Optimization and Beyond[M]. MIT Press, Cambridge, MA, 2002.
  • 10Chang C C, Lin C J. LIBSVM: A Libray for Support Vector Machines[P]. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/, 2004.

共引文献212

同被引文献126

引证文献11

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部